PROGRAMME

5th EAVLD

5th Congress of the European Association of Veterinary Laboratory Diagnosticians
14–17 October, 2018, MCE Business and Conference Centre, Brussels

WWW.EAVLD2018.ORG
Organised by

Gold Partners

Silver Partners

Bronze Partners
Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome Letter</td>
<td>2</td>
</tr>
<tr>
<td>Organisers</td>
<td>5</td>
</tr>
<tr>
<td>Committees</td>
<td>9</td>
</tr>
<tr>
<td>Mobile App</td>
<td>10</td>
</tr>
<tr>
<td>Floorplan</td>
<td>11</td>
</tr>
<tr>
<td>Programme at a Glance</td>
<td>12</td>
</tr>
<tr>
<td>Company Profiles</td>
<td>14</td>
</tr>
<tr>
<td>Social Programme</td>
<td>22</td>
</tr>
<tr>
<td>Partners Acknowledgment</td>
<td>27</td>
</tr>
<tr>
<td>For Authors</td>
<td>28</td>
</tr>
<tr>
<td>Keynotes</td>
<td>32</td>
</tr>
<tr>
<td>Programme</td>
<td>43</td>
</tr>
<tr>
<td>List of Posters</td>
<td>54</td>
</tr>
</tbody>
</table>
Welcome Letter

Dear colleagues,
welcome to the 5th EAVLD congress in Brusselles.

I think that this meeting represents always a good chance to meet colleagues, share ideas and improve knowledge on the state of the art of the research in your field of activity. The number of sponsors that also this year choose to join the congress will offer a unique opportunity to be informed on latest advance in diagnostics to be adopted in our daily activity.

I would like to thank Thierry van der Berg and his team for undertaking the organisation of the 5th EAVLD congress.

The scientific program that we will benefit from is the result of a hard and careful work and I think that it completely satisfy the expectations of EAVLD associates.

Regarding 2018 venue, we hope that our choice will meet your expectations, as we think that Brusselles represents an attractive destination offering quite good connections, but also wonderful places to be visited. Please, take some time for you to make a tour at the Grand Place, Saint Michel Cathedrale, the European Parliament. You will have the chance to realise how this town is rich of diverse neighbourhoods, representing a melting point of races and customs.

This year the presidency of EAVLD will pass from me to Eefke Weesendorp, current Vicepresident, to whom I wish a bright mandate with the collaboration of old and new board members.

Don’t forget to attend the EAVLD General Meeting of the members which will be held on Tuesday 16th October at 17:30–18:00.

I remember to you that since 2016 every active congress participant becomes the member of EAVLD for two years, thus all of you are invited for this meeting. We ask to you to bring new ideas in order to modernise the society according to your expectations.

I wish you a fruitful congress

Elena Bozzetta
EAVLD President
Animal and Plant Health Agency (APHA) are an internationally recognised centre of scientific excellence for its expertise in animal and plant health.

We provide a wide range of research and consultancy to the UK Government, commercial customers and wider stakeholders. APHA is a reference laboratory for a number of animal diseases at national and international level.

To enhance its scientific activity APHA develops commercial products and services and makes them available to organisations globally. Through APHA Scientific these products and services are delivered effectively to customers.

Our products and services include:

- Biological reagents and test kits
- Proficiency testing (VETQAS)
- Wildlife management and radar detection
- Laboratory testing
- Vaccine development and testing
- Virus discovery
- Pathology and bio-imaging
- Bacterial identification and characterisation
- Veterinary research and development
- Access to APHA intellectual property.

For further information or to discuss your requirements please contact:

+44 (0)3000 600001
aphascientific@apha.gov.uk
www.aphascientific.com
Be in Control with BioChek

Diagnostic Solutions for Poultry & Swine

- ELISA Kits with Reference Controls
- PCR Kits with Standards
- Easy to Use Monitoring Software
- Worldwide Support

WWW.BIOCHEK.COM
Organisers

European Association of Veterinary Laboratory Diagnosticians
eavld.org

EAVLD

is a non-profit, independent association with the mission of improving veterinary and public health by providing a platform for communication among veterinary laboratory diagnosticians and to promote the highest standards in European veterinary laboratories.

History

In 2008 CoVetLab (www.covetlab.org) started an initiative to broaden collaboration on a European level. Modelling itself on the World Association of Veterinary Laboratory Diagnosticians (WAVLD) and the American Association of Veterinary Laboratory Diagnosticians (AAVLD), in April 2009 the European Association of Veterinary Laboratory Diagnosticians (EAVLD) was officially formed. The aim was to create an inclusive forum for veterinary laboratory scientists working in all disciplines across the full range of species.

Privileges and benefits

• Member of an association that provides a platform that increases personal standards and standards of the laboratory of members in performing veterinary diagnostics.
• Possibility to contribute to improvement and standardization of veterinary diagnostic techniques.
• Discounted registration fees for attending the biennial EAVLD congress.
• At least 2 EAVLD newsletters per year by e-mail.
• Discounted subscription on Journal of Veterinary Diagnostic Investigation (hardcopy and/or digital edition).

LinkedIn

EAVLD also has a LinkedIn group (www.linkedin.com/groups/EAVLD-4010747). Both members and non-members of EAVLD can become a member of this LinkedIn group and remain in contact with each other. However, members of the LinkedIn group do not have any of the other EAVLD membership privileges.
Sciensano

sciensano.be

Sciensano is the result of a merger between the former Veterinary and Agrochemical Research Centre (CODA-CERVA) and the ex-Scientific Institute of Public Health (WIV-ISP). The merger of these two institutes brings together more than a century of scientific expertise in human and animal health.

Sciensano can count on more than 700 staff members to achieving its motto: Healthy all life long. Scientano focus on the close and indissoluble interconnection between human and animal health and their environment (the “One health” concept). By combining different research perspectives within this framework, Sciensano contributes in its unique way to everybody’s health.

Sciensano’s activities cover 6 large areas:

- Animal Health
- Effectiveness and safety of vaccines, medicines and health products – Quality of medical laboratories
- Food consumption and food safety
- Health and disease monitoring
- Health and environment
- Quality of healthcare

With regard to animal health, Sciensano provides scientific and technical support, not only to the federal authorities namely the Federal Public Service for Public Health, food chain safety and environment and the Federal Agency for the Safety of the Food Chain (FAFSC) but also to professional organisations and front-line laboratories. At international level, we are nominated as EURL and OIE and/or FAO reference of collaborative centers for several viral diseases.

The core activities of the Scientific Direction “Infectious Animal Diseases“ consist of:

- Scientific research
- Expert advice
- Efficient provision of services

As an expert in the field of Animal Health, Sciensano includes the following fields of activities:

- Epidemic, endemic and emerging transmittable diseases in animals
- Zoonotic and emerging infectious diseases threatening public health
- Epidemiology
 - surveillance
 - risk analysis
 - molecular epidemiology

Resources

The veterinary laboratories of Sciensano employ more than 100 researchers and laboratory technicians located in Brussels, and an experimental center at Machelen.
DGZ

Animal Health Care Flanders (DGZ) is the reliable partner of the farmer and veterinarian to obtain healthy animals in order to produce safe food. DGZ is a main actor in livestock production in Flanders. DGZ supports farmers in the prevention and control of animal diseases. It is a supplier of tools and best practices in preventive healthcare and it delivers services in the complete livestock value chain.

The organisation consists of three business units:

- Identification and registration
- Laboratory
- Health care support

The unit Identification and registration supports farmers in the legally required identification and registration of their farm and animals. This way it is possible to follow an animal and its products through all stages of the food chain, which is important in guarding food safety.

The laboratory performs almost 1.7 million analyses yearly. The DGZ lab is fully equipped for serological, microbiological and molecular diagnostics. Applications for hematology, electrophoresis, biochemistry, histology and parasitology are also present. Performing animal necropsies are a daily activity of the laboratory.

The Health care support unit has elaborate experience in setting up (legally required) preventive disease control programs in livestock production systems. On top of that, DGZ has a team of veterinarians specialized in each livestock species to support both farmers and veterinarians in practice in preventive veterinary medicine.

EPIZONE

The Epizone European Research Group (ERG) is the international network of veterinary research institutes working on epizootic animal diseases including those which may have zoonotic potential. It plays a key role in research on prevention, detection and control of animal diseases and zoonoses in order to reduce the risks and harm to animal health and the risks to public health in the EU and beyond.

ARSIA

ARSIA is a regional association for identification and animal health in the south part of Belgium.

ARSIA is active in two sectors: identification and animal health.

In the context of the identification and registration of livestock, the species subject to this obligation are cattle, pigs, sheep, goats and poultry.

The animal health activities are divided in two departments. The first one is a laboratory for the veterinary diagnosis and animal necropsy, and the second is dedicated for the certification and assistance of the Walloon herds.

ARSIA carry out this mission under supervision of the public authorities when the pathologies to be investigated are subject to health regulations.

Wageningen Bioveterinary Research

Wageningen Bioveterinary Research (WBVR) is a scientific research institute which is part of the Wageningen University and Research consortium. WBVR collaborates with public and private partners to safeguard public and animal health through prevention, eradication and control of animal diseases.
Herd health is paramount to ensuring milk quality. Avoiding traps such as subclinical mastitis and suboptimal fertility can help increase milk production and boost dairy farmers’ revenues. bioMérieux mastitis testing and fertility assessment solutions help you detect unseen milk thieves early, so you can reduce risks while maximizing profitability.

GET BETTER INFORMATION. MAKE BETTER DECISIONS.

Dairy farmers have to keep track of a wide variety of factors that can put pressure on cattle. Getting the right information at the right time leads to faster, better decision making. bioMérieux solutions allow you to leverage our expertise in microbiology and fertility to help you optimize herd health and production.

Targeted Mastitis Management Improved Herd Fertility

BOOTH #2

PIONEERING DIAGNOSTICS
www.biomerieux-industry.com
Commities

Local Organizing Committee

• Thierry van den Berg, Sciensano
• Ann Brigitte Cay, Sciensano
• Steven Van Borm, Sciensano
• Mia Vanrobaeys, DGZ
• Christian Quinet, ARSIA

Scientific Committee

• Elena Bozzetta, EAVLD president, Italy
• Bernd Hoffmann, FLI, Germany
• Willie Loeffen, WUR, The Netherlands
• Hans Nauwynck, UGhent, Belgium
• Claude Saegerman, Uliège, Belgium
• Petr Vaclavek, EAVLD, Czech Republik
• Wim van der Poel, Epizone, The Netherlands
• Eefke Weesendorp, EAVLD, The Netherlands
• Stéphan Zientara, ANSES, France
• Thierry van den Berg, Sciensano
• Ann Brigitte Cay, Sciensano
• Steven Van Borm, Sciensano
• Mia Van Robaeys, DGZ
• Christian Quinet, ARSIA
• Simona Zoppi, IZSTO, Italy
Mobile App

We are happy to present you the new EAVLD 2018 APP, which is your window to the up to minute information about the Congress.

The App includes:
- Complete Programme Overview incl. personification
- User-friendly navigation
- Multiple networking opportunities
- Floorplan of the venue
- Exhibition details
- Social Programme information
- Find your way with venue map

To sign in to the App, please use your personal login details used during registration or abstract submission. Should you need assistance please contact us or retrieve your password here.

The access to the EAVLD 2018 content is enabled for good standing participants only.

App download
The App is available for Android and iOS – search for EAVLD 2018 or scan the code below:
Programme at a Glance

<table>
<thead>
<tr>
<th>Sunday 14 October</th>
<th>Monday 15 October</th>
<th>Tuesday 16 October</th>
<th>Wednesday 17 October</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>Oral Presentations</td>
<td>Keynote Lecture</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>11:45</td>
<td></td>
<td>Keynote Lecture</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>12:00</td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>12:15</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>12:30</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>12:45</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>13:15</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>13:30</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>13:45</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>14:00</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>14:15</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>14:30</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>14:45</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>15:00</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>15:15</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>15:30</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>15:45</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>16:00</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>16:15</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>16:30</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>16:45</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>17:00</td>
<td></td>
<td>Oral Presentations</td>
<td>Oral Presentations</td>
</tr>
<tr>
<td>17:15</td>
<td>Registration</td>
<td>Optional Tour</td>
<td>EAVLD General Meeting</td>
</tr>
<tr>
<td>17:30</td>
<td></td>
<td>Welcome Reception</td>
<td>(EAVLD members only)</td>
</tr>
<tr>
<td>17:45</td>
<td></td>
<td>at the Exhibition</td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>18:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7:30 - 7:45 Registration
8:00 - 12:00 Oral Presentations
12:15 - 17:00 Optional Tour
18:00 - 22:00 Welcome Reception at the Exhibition Area
Zoetis is a global animal health company dedicated to supporting its customers and their businesses in ever better ways. Building on more than 60 years of experience, we have earned our position as the world leader in the discovery, development, manufacture and marketing of veterinary vaccines and medicines.

OUR VISION: Our products, services and people will be the most valued by animal health customers around the world.

OUR MISSION: We build on a six-decade history and singular focus on animal health to bring customers quality products, service, and a commitment to their business.

OUR PURPOSE: Because the world depends on animals, those who raise and care for them can depend on us.

All brands are the property of Zoetis Inc., its affiliates and/or its licensors. ©2018 Zoetis Inc. All rights reserved.
Company Profiles

Gold Partners

Booth Nr. 14
Exhibitor Name: Diatheva
Contact Person: Cosimo Lenti
Telephone: + 39 0721830605
Email: c.lenti@sol.it
Website: www.diatheva.com

DIATHEVA is focused on Research, Development and Manufacturing of products for Human clinical diagnostic, veterinary and for the study of the antimicrobial resistance. This year, for the first time, we are launching Salmonella Abortusovis Test, an immunoassay for the management of salmonellosis in sheep.

Booth Nr. 21
Exhibitor Name: IDEXX Livestock, Poultry and Dairy
Contact Person: Varinka Mauderli
Telephone: + 41 31 9706262
Email: varinka-mauderli@idexx.com
Website: www.idexx.com/en/livestock/

About IDEXX Livestock, Poultry and Dairy Diagnostics
Livestock and poultry producers, laboratories, veterinarians and dairy processors depend on IDEXX diagnostic technologies to make confident decisions about animal health, disease management and reproductive efficiency, and to ensure consumers have access to safe, healthy food and milk. Reproducibility, reliability and accuracy are three of the reasons why more than 1.5 billion IDEXX tests – including dairy residue tests and milk-based diagnostics – have been run worldwide since 1985. For more information, please visit our website at www.idexx.com/livestock.

Booth Nr. 17
Exhibitor Name: INGENASA

INGENASA is a reference in the field of Biotechnology. We research, develop, produce and commercialize diagnostics for food, animals and plants. Our catalogue includes 156 references for more than 50 pathologies. Present in 110 countries with a network of 56 distributors.

INGENASA is now part of Eurofins Technologies.

Booth Nr. 1
Exhibitor Name: THERMO FISHER SCIENTIFIC
Contact Person: Gaëlle Ranaldi
Telephone: + (33)612561913
Email: gaelle.ranaldi@thermofisher.com
Website: www.thermofisher.com/uk/en/home/industrial/animal-health.html

Thermo Fisher Scientific is the world leader in serving science. Our mission is to enable our customers to make the world healthier, cleaner and safer. For more than 50 years, we develop and provide diagnostic tools for production animals. Our portfolio is a combination of real-time PCR tests, ELISA kits and nucleic acid extraction kits.
Booth Nr. 18

Exhibitor Name: ZOETIS FRANCE
Contact Person: Elodie Reymond
Telephone: + 33.24.97.25.41
Email: elodie.reymond@zoetis.com
Website: www.zoetis.com

Zoetis is a global animal health company dedicated to supporting customers and their businesses in ever better ways. Building on 60 years of experience, we deliver quality medicines and vaccines, complemented by diagnostic products, genetic tests, biodevices and a range of services.

Silver Partners

Booth Nr. 4

Exhibitor Name: APHA Scientific
Contact Person: Michelle Felstead
Telephone: + 44 (0) 3000 600001
Email: aphascientific@apha.gov.uk
Website: www.aphascientific.com

Animal and Plant Health Agency (APHA) are an internationally recognised centre of scientific excellence providing a wide range of research and consultancy to the UK Government and commercial customers. We specialise in diseases of livestock and plants, diagnosis of disease and surveillance of new and emerging disease. APHA has achieved world reference laboratory status for a number of animal diseases.

To enhance its scientific activity APHA develops commercial products and services and makes them available to organisations globally. These are brought together under APHA Scientific to ensure the products and services are delivered effectively to customers.

Booth Nr. 12

Exhibitor Name: BioChek
Contact Person: Nora Sinnema
Telephone: + 31 6 19816766
Email: nora@biochek.com
Website: www.biochek.com

BioChek provides veterinarians all over the world with state-of-the art diagnostic ELISA- and PCR tests, in order to improve health and productivity of poultry and swine.

We offer a wide range, including reference controls (ELISA)/standards (PCR), unique software to easily analyze and compare results, combined with great service and support.
Booth Nr. 2

Exhibitor Name: bioMérieux S.A.

Contact Person: Madame Sakurako MARCHAND

Telephone: + 33 (0) 4 78 87 7733 - +33 6 320 68 203

Email: sakurako.marchand@biomerieux.com

Contact Person: Monsieur Eric BOUTEILLE

Telephone: + 33 (0) 4 78 87 2255 - +33 6 260 264 70

Email: eric.bouteille@biomerieux.com

Website: www.biomerieux-industry.com

bioMérieux is committed to the fight against public health threats as Antimicrobial Resistance as well as contributing to improve food supply productivity through our unique expertise in diagnostic. bioMérieux’s offer aims at bringing faster and ever more accurate to your laboratory results between sampling and the results of the test.

Booth Nr. 3

Exhibitor Name: Biovet Inc.

Contact Person: René Lallier

Telephone: + 1 450 771-7291

Email: order@biovet-inc.com

Website: www.biovet.ca

Biovet Inc. develops, manufactures and markets animal diagnostic kits. Biovet providing unique expertise in the field of diagnostics for animal health and agro-industry specialists. Biovet operates certified laboratories offering a complete array of innovative diagnostic services for veterinarians. Biovet employs more than 70 people including 15 scientists. The company is active worldwide.

Booth Nr. 20

Exhibitor Name: Bio-X Diagnostics

Contact Person: Annita GINTER

Telephone: + 32 495 51 90 61

Email: a.ginter@biox.com

Website: www.biox.com

Bio-X Diagnostics founded in 1990 is a manufacturer of veterinary diagnostic tests for laboratory and point-of-care use, based on ELISA, IFA (Immunofluorescence Assay) and Lateral-flow technologies.

With the acquisition of ADIAGENE, Bio-X Diagnostics expands its product portfolio, to include PCR kits, and is committed to offering quality tests for the animal health sector.

Booth Nr. 22

Exhibitor Name: Fast Track Veterinary, A Siemens Healthineers Company

Contact Person: Clara Larcher

Telephone: + 352 281 098-218

Email: marketing@fast-trackdiagnostics.com

Website: www.fast-trackdiagnostics.com

Fast Track Veterinary, A Siemens Healthineers Company, offers ready-to-use kits based on the syndromic approach, for the detection of infectious diseases in animals. Lyophilised, FTvet kits include all the reagents required in a single tube and ensure the most accurate results in less than 2 hours.
Booth Nr. 19

Exhibitor Name: HIPRA

- **Contact Person:** Sandra Gascon
- **Telephone:** + 34 616771583
- **Email:** sandra.gascon@hipra.com
- **Website:** www.hipra.com

HIPRA is a veterinary pharmaceutical company dedicated to the research, production and marketing of products for Animal Health.

We have a broad range of highly innovative Biological products and our own line of Diagnostic kits (CIVTEST) which has been developed by our R&D department to offer veterinary professionals highly reliable diagnostics.

Booth Nr. 9

Exhibitor Name: IDvet

- **Contact Person:** Anna GREATREX
- **Telephone:** + 33 (0)6 84 56 96 15
- **Email:** anna.greatrex@id-vet.com
- **Website:** www.id-vet.com

Established in 2004, IDvet offers a comprehensive range of ELISA & PCR kits for the diagnosis of livestock and poultry diseases.

Our ELISAs are high-quality tests which are extensively validated, meet international standards and show innovation and improved test performance.

For PCR, we offer a complete range of products for molecular testing, including instruments, extraction and amplification reagents.

Booth Nr. 11

Exhibitor Name: INDICAL BIOSCIENCE

- **Contact Person:** Dr. med. vet. Carsten Schroeder
- **Telephone:** + 49 341 12454 0
- **Email:** info@indical.com
- **Website:** www.indical.com

With over two decades of experience, INDICAL (formerly QIAGEN Animal Health) is a leading provider of molecular diagnostic workflows, the protocols for their use and the support that empowers our customers every day. Our products help you to reliably identify animal diseases to protect animal and human health.

Booth Nr. 16

Exhibitor Name: MEGACOR Diagnostik GmbH

- **Contact Person:** Dr. Mario Löwenstein
- **Telephone:** + 43 5573 85400
- **Email:** info@megacor.at
- **Website:** www.megacor.com

MEGACOR Diagnostik GmbH develops and distributes veterinary in-vitro-diagnostics for veterinarians, veterinary hospitals and laboratories.

Our products include on-site rapid FASTest®, MegaELISA®, MegaFLUO® IFT and MegaLINE® tests for the detection of antigens and antibodies of bacterial, viral and parasitic pathogens, veterinary relevant hormones and inflammation markers for small and large animals.
Booth Nr. 10

Exhibitor Name: Primerdesign
Contact Person: Sagar Vengurlekar
Telephone: + 44 (0) 23 8074 8830
Email: sagar.vengurlekar@novacyt.com
Website: www.primerdesign.co.uk

Primerdesign, part of the Novacyt Group, provides the World’s broadest menu of >275 genesig real-time PCR detection kits for veterinary pathogens, and development of new assays on demand. Our qPCR instrument, genesig q16, is small, portable, and allows fast DNA / RNA detection of bacterial, fungal and viral pathogen infection.

Bronze Partners

Booth Nr. 13

Exhibitor Name: BIOSELLAL
Contact Person: Eric SELLAL
Telephone: + 33 4 26 78 47 60
Email: contact@biosellal.com
Website: www.biosellal.com

Biosellal offers complete solutions for the diagnosis of infectious diseases in animal health (Serology and Molecular Biology):
• Real-time PCR and ELISA training, optimization of your labs or new lab turnkey
• A new generation qPCR thermocycler with simplified and economical maintenance
• Sample pre-treatment and sample extraction kits for PCR
• PCR diagnostic kits and ELISA diagnostic kits.

Booth Nr. 5

Exhibitor Name: EUROIMMUN
Contact Person: Dr. Erik Lattwein
Telephone: + (49) 38826 892 11431
Email: e.lattwein@euroimmun.de
Website: www.euroimmun.com / www.vet.euroimmun.com

Since 1987 EUROIMMUN produces an extensive range of indirect immunofluorescence, ELISA, immunoblot and radioimmunoassay test systems for laboratory diagnostics in fields of autoimmunity, infectious serology, and allergology for human and veterinary medicine. EUROIMMUN has its headquarters in Luebeck, Germany and supplies its products and services to over 3,000 laboratories worldwide.

Booth Nr. 25

Exhibitor Name: Exopol
Contact Person: Clara Baselga
Telephone: + 34 976694525
Email: cbaselga@exopol.com
Website: www.exopol.com/en/

Company profile – max. 50 words: Exopol is a biotechnology company based in Zaragoza (Spain) since 1993, created with the aim of developing quality diagnosis and solutions for animal health through scientific research.
Booth Nr. 23

Exhibitor Name: GD Animal Health
Contact Person: Annemiek Kolkman
Telephone: +31 6 1009 4819
Email: a.kolkman@gdanimalhealth.com
Website: www.gdanimalhealth.com

GD Animal Health is an international organization, unique in combining animal health expertise, R&D and diagnostics to provide a total solution in animal health. Amongst our customers are veterinary laboratories and test-kit manufacturers to whom we provide diagnostics, proficiency testing schemes, biological reagents, our GD Academy, contract research, consultancy and various R&D work.

Booth Nr. 15

Exhibitor Name: ingenetix
Contact Person: Ms Valerie Stadlmann
Telephone: +43 (0)1 36 198 0 198
Email: office@ingenetix.com
Website: ingenetix.com

Ingenetix is an established Austrian biotech company, specialised in PCR-based techniques with long-standing, profound expertise in development of pathogen detection assays for veterinary applications. We provide state-of-the-art PCR-kits in custom-oriented formats for conventional real-time PCR-platforms and application-specific assay design. Ingenetix is operating internationally - with a network of trustworthy distribution partners.

Booth Nr. 8

Exhibitor Name: Kylt®
Contact Person: Florian Werner
Telephone: +4944739438796
Email: werner@anicon.eu
Website: www.kylt.eu

Kylt® PCR Kits are in-vitro diagnostics for bacterial and viral pathogens poultry, ruminants and swine. Made in Germany by AniCon, Kylt® products provide ease of use, reliability and highest sensitivity and accuracy. Discover how Kylt® can facilitate your diagnostic routine! Visit www.kylt.eu.

Booth Nr. 15

Exhibitor Name: Labconsult nv/sa
Contact Person: Ms Liesbet D’Haese
Telephone: +32 2 743 39 90
Email: liesbet.dhaese@labconsult.be
Website: labconsult.be

HIGH-QUALITY & INNOVATIVE SOLUTIONS FROM EVERYDAY ESSENTIALS TO INSTRUMENTS FOR EVERY LAB FOR EVERY APPLICATION

With over 20 years of experience and market knowledge, we provide innovative products and solutions. Thanks to the wide range of products and services, Labconsult conducts business with R&D, Industry, Quality and Diagnostic Laboratories.
MEDIAN Diagnostics Inc. was the first company in Korea to be approved as a manufacturer of veterinary diagnostic products in 2001. Beginning with the “ELISA for Swine Fever Virus Antibody Test”, we have obtained approvals of dozens of in vitro veterinary diagnostic products and are constantly promoting the commercialization of products based on our diagnostic technologies. Furthermore, we are expanding our business into markets of ingredients necessary for medicine productions, biological manufacture of genetic recombinant materials and therapeutic products, etc. With these efforts, we’ll be a leader in diagnostic products and biological products, and also contribute to human and animal health.

Booth Nr. 24

Exhibitor Name: Tetracore, Inc.
Contact Person: Rolf Rauh or John Kelly
Telephone: + 1-240-268-5400
Email: rrauh@tetracore.com or jkelly@tetracore.com
Website: www.tetracore.com

Providing Advanced Molecular and Immunological Detection

Tetracore is a biotechnology company whose mission is to create and develop highly innovative diagnostic reagents, assays, and instruments for the detection of infectious diseases and bio-terrorism threat agents. We focus on animal health, domestic preparedness, clinical, antibody and ELISA products.

Booth Nr. 6

Exhibitor Name: VMRD Inc
Contact Person: Brady Weldon
Telephone: + 1 509-336-4469
Email: order@vmrd.com
Website: www.vmrd.com

Exhibitors

Booth Nr. 26

Exhibitor Name: Boehringer Ingelheim Svanova
Contact Person: Helena Wensman
Telephone: + 46 (0) 70 20 12 584
Email: helena.wensman@boehringer-ingelheim.com
Website: www.svanova.com

Boehringer Ingelheim Svanova develops high quality diagnostics for detection of antibodies to viruses, bacteria and parasites in various animal species. Svanova has created veterinary diagnostic solutions for over 25 years that contribute to the control of infectious diseases in more than 70 countries worldwide.
Booth Nr. 27
Exhibitor Name: GeneReach Biotechnology Corp.
Telephone: +886 4 2463 9869
Email: sales@genereach.com
Website: www.genereach.com

GeneReach Biotechnology Corp. is dedicated to develop, manufacture and promote products for nucleic acid detection. We offer several pathogen detection platforms, including instruments and reagents, to multiple industries. Our major goal is to provide products and services of high quality for the point-of-need molecular detection market worldwide.
Social Programme

Welcome Reception
14 October 2018, 18:00–19:30
MCE (venue), Rue de l’Aqueduc 118, 1050 Ixelles
Included in the registration fee

Congress Dinner
16 October 2018, 19:30–22:00
The Belgian Comic Strip Center – Museum Brussels, Rue des Sables 20, 1000 Brussels
Value of 75 EUR is part of the registration fee
Standing dinner

About the venue
An accomplished attraction located in the heart of Brussels, the Comics Art Museum has been honouring the creators and heroes of the 9th Art for more than 25 years. The regularly renewed permanent exhibitions and a diversified programme of temporary exhibitions enable visitors to discover the countless aspects of comics art. Tintin and the Smurfs lead the way towards further adventures, an encounter with a world where creativity has no limits. Enhanced by an exceptional Art Nouveau home designed by Victor Horta, the Comics Art Museum is just as much a tribute to the pioneers as a glimpse of contemporary comics art.
Bio-X Diagnostics puts its more than 25 years of experience and know-how in the veterinary diagnostics.

MONOSCREEN™ ELISA ELISA ELISA

Monoscreen™: ELISA tests for single-parameter antigen (AgELISA) and antibody (AbELISA) detection and quantification (QuantELISA).

MULTISCREEN™ ELISA ELISA

Multiscreen™: ELISA tests for multi-parameter antigen (AgELISA) or antibody (AbELISA) detection.

ADIAVET™ / ADIAMAG™ / ADIAPURE™

ADIAVET™: Real time PCR amplification kits.
ADIAPURE™/ADIAMAG™: range of extraction systems and reagents.

Reagents for immunofluorescence assays

Unconjugated (Moab) or conjugated monoclonal antibodies (FITC Moab).
The symposium is open to all EAVLD attendees. We look forward to seeing you there!
Since its formation in 2006, Fast Track Diagnostics, a Siemens Healthineers Company, has become one of the leading global suppliers of real-time PCR multiplexing kits. In 2017, FTD launched a range of lyophilised assays for the detection of infectious diseases in companion animals. Our team of veterinarians and scientists works to provide veterinary specialists with the means to make faster, better informed decisions – giving them the true positives and true negatives needed to minimise uncertainty and lead to better patient outcomes.

All FTvet kits contain all the reagents required – primers, probes, enzymes and buffers – in a single patient sample tube. You just need to add nucleic acid extracts and start the real time PCR run. With the provided specific data, health specialists can make quicker and better decisions.

Lyophilised kits are ideally suited to laboratory process automation. They lead to a faster diagnosis as it involves less liquid handling, reducing simultaneously the possibility of pipetting errors, contaminations and misleading outputs. The diagnosis is received in less than two hours allowing clinicians to start the relevant treatment quicker.

Stability studies have shown so far enhanced robustness: lyophilised kits have a long shelf life and can be shipped without a cold chain avoiding possible erroneous results due to assay deterioration. Furthermore, less packaging is needed leading to a positive environmental impact.

FTvet kits are the new innovative solution for companions. They allow a faster and a more accurate diagnosis leading to a general improvement of the world health by providing animals with the relevant and effective treatment just on time.
Detection and quantification of specific antibodies against *Mycoplasma agalactiae* in sheep and goat sera, by indirect ELISA.

FOR OVINE AND CAPRINE SERA

RESULTS IN 50'

184 AND 460 TESTS SALES PRESENTATIONS
Partners Acknowledgment

The organisers sincerely thank the following partners for their generous support of the congress.

Gold Partners

- DIATHEVA
- IDEXX
- INGENASA
- ThermoFisher Scientific
- Zoetis

Silver Partners

- APHA Scientific
- BioChek
- BIOMÉRIEUX
- Biovet
- BioA Diagnostics
- Fast Track Diagnostics
- HIPRA
- IDvet
- INDICAL BIOSCIENCE
- PRIMER DESIGN

Bronze Partners

- biosellal
- EUROWIMMUN
- Exopol
- GD Animal Health
- Ingenetix
- Kylt
- Labconsult
- MEDIAN Diagnostics
- DIAGNOSTIK MEGACOR
- TetraCore
- VMRD

www.eavld2018.org
For Authors

Oral Presentation Guidelines

Before preparing your oral presentation and before coming to the 5th EAVLD Congress, please take a few minutes to read the following guidelines.

Oral presentations are always accompanied by PowerPoint presentations. The speakers are entirely responsible for the presentation content (order, graphics etc...). Once onsite every speaker should also verify in the Final programme that the name of the room and the time of the session has not changed.

For Your Presentation

All presentations and questions must be delivered in English, as English is the official language of the Congress. Time reserved for your presentation is: 15 minutes

Depositing Your File

Your presentation must be handed over on a USB stick to the personnel directly in the lecture room in which your presentation will take place as far in advance as possible and **two hours BEFORE the beginning of each of your dedicated sessions AT THE LATEST**. The presentation for an early morning session should be handed over the evening before.

In the lecture room, you will be assisted by a technician, who will help you to download your presentation to the internal network. The lecture room opens each morning 30 minutes before the start of a first session and remains open throughout the day until the end of the last session.

In the Lecture Room

Once the presentation is launched on the computer in the respective lecture room, you will advance your own slides using the remote control. Please, do **NOT** come at the last minute with your own computer into the lecture room: you will **NOT BE ABLE** to connect it. All presentations must be downloaded in advance.

Detect ASFV with the modular RealPCR platform

Test for African swine fever virus (ASFV) with the RealPCR® ASFV DNA Test:

Choose a single mix for full-genotype coverage (n=22 tested).
Can be used in domestic and wild pigs in early stages of infection in serum/blood, tissue, and oral fluid samples.

Increase ease of use with the modular RealPCR® platform, validated on most common real-time PCR instruments.

Help veterinarians and producers manage screening, surveillance, and control programs with confidence.

Analytical sensitivity and efficiency of the RealPCR ASFV DNA Test down to one copy per reaction

© 2018 IDEXX Laboratories, Inc. All rights reserved. • 2125954-00-EN-L
The IDEXX Privacy Policy is available at idexx.com.
*IDEXX, RealPCR, and Test With Confidence are trademarks or registered trademarks of IDEXX Laboratories, Inc. or its affiliates in the United States and/or other countries.
This product is sold under licensing agreement with Biosearch Technologies, Inc. Not for human in vitro diagnostic (IVD) use.
MONITOR THE MOST RECENT MAJOR DISEASE OUTBREAKS WITH NEW ELISA AND PCR KITS

AFRICAN SWINE FEVER
- Indirect and competitive ELISAs with the highest sensitivity and specificity even for wild boars
- Highly sensitive duplex qPCR

PESTE DES PETITS RUMINANTS
- The most widely used antibody and antigen ELISAs
- Rapid pen-side antigen test
- qPCR kit

LUMPY SKIN DISEASE / CAPRIPOXVIRUS
- Indirect ELISA
- DIVA qPCR to distinguish LSD from Neethling disease

INFLUENZA A
- Wide range of screening and typing ELISAs
- qPCR

MYCOPLASMA BOVIS
- Indirect ELISA: the highest specificity and sensitivity

VISIT US AT THE EAVLD MEETING, OCT 14-17 AT BOOTH 9

www.id-vet.com
Poster Presentation Guidelines

Before preparing your poster presentation and before coming to the 5th EAVLD Congress, please take a few minutes to read the following guidelines.

Each poster board will be given a specific number – the number of your poster is the PRESENTATION NO. Please make sure to mount your poster on the poster board with the number corresponding to the number assigned to your poster presentation (e.g., P 01, P 02). In order to fit the poster board, your poster should not exceed the recommended size. Prepare your material beforehand so that it will fit neatly into the space available and can be easily attached to the board. Thin cardboard is more suitable than paper. The Congress organizers will provide suitable fixing materials.

Poster Reception

One main poster session during which all the posters should be presented by their authors has been scheduled to the Congress programme as follows:
Monday, 15 October; 12:00 – 13:45
Poster authors/presenters are expected to be present by their posters during the Poster reception to present their work and answer all questions.
However, the viewing of the posters by the Congress attendees will be happening during lunch and coffee breaks as well.
Poster Area will be located on the Ground floor foyer.
Poster authors/presenters are expected to be present by their posters during the Poster session to present their work and answer all questions.

Poster Dimensions

The maximum dimensions of your poster are 90 cm × 120 cm (portrait orientation).
In order to fit the poster board, your poster should not exceed the recommended size. Prepare your material beforehand so that it will fit neatly into the space available and can be easily attached to the board. Thin cardboard is more suitable than paper. The Congress organizers will provide suitable fixing materials, and on site assistance will be available to help you display your poster.
Posters will be displayed on the poster boards – each poster board will be labelled with a specific number. Please make sure to mount your poster on the poster board with the number corresponding to the number assigned to your poster presentation.

Mounting Your Poster

Poster Area will be open for poster mounting since Monday, 15 October; 07:30. All posters should be set up on the same day by 12:00, prior to the scheduled Poster session. All posters will be displayed for the whole Congress period.

Removing Your Poster

All materials must be removed by the owner of the poster on Wednesday, 17 October after 12:30. The Congress organizers cannot accept responsibility for any material left behind. The organizers are not responsible for loss or damage to those posters that are not removed by authors within the times of dismantling as indicated above, posters left behind will be automatically destroyed.
Keynotes

Christian Gortazar

Head, SaBio (Sanidad y Biotecnología) Research Group, National Wildlife Research Institute IREC (CSIC-Universidad de Castilla – La Mancha). Ronda de Toledo 12, 13005 Ciudad Real, Spain.

Christian Gortazar (San Sebastián, 1967) got a Degree in Veterinary Sciences at Universidad de Zaragoza, in 1990, and a PhD at the same University in 1997. Since 1999, he is Professor at IREC, a multidisciplinary research institute dealing with conservation and management of wildlife and their habitats (www.SaBio-IREC.com). His lecturing on wildlife diseases is part of IREC’s MSc and PhD programs, where he has mentored >20 successful international PhD students. He has acted as principal researcher in numerous grants and contracts on wildlife epidemiology and disease control. Co-author of >350 scientific publications, his research interests include viral, bacterial and parasitic diseases of wildlife, with emphasis on the epidemiology and control of relevant infections shared with livestock and humans, such as tuberculosis.

CURRENT CHALLENGES IN DIAGNOSIS OF ANIMAL TUBERCULOSIS: NEW TESTS AND THEIR APPLICATIONS IN CONTROL STRATEGIES IN WILDLIFE

Christian Gortázar

SaBio, National Wildlife Research Institute IREC (Universidad de Castilla – La Mancha & CSIC), Ciudad Real, Spain

Animal tuberculosis (TB) is caused by infection with *Mycobacterium bovis* and closely related members of the *Mycobacterium tuberculosis* complex (MTC). It is a typical multi-host infection which in Europe involves several domestic hosts including cattle, goats, sheep and pigs, as well as several wild hosts, mainly the European badger (*Meles meles*), the Eurasian wild boar (*Sus scrofa*), and cervids such as red deer (*Cervus elaphus*) and fallow deer (*Dama dama*). The host range varies among geographical regions and new hosts are steadily added to the list of animal species contributing to MTC maintenance. Moreover, *M. bovis* is able to survive for some time in the environment, including water and mud or even salt stones. This creates remarkable challenges for TB eradication, particularly in multi-host systems with a strong environmental component of MTC transmission.

In cattle, TB testing is traditionally based on measuring the cell-mediated immune response to more or less MTC-specific antigens, most often to *M. bovis* (bovine) purified protein derivative (bPPD). Additional diagnosis takes place at slaughter, based on the detection of TB-compatible lesions and on MTC-culture. Similar tests are applied to other domestic MTC hosts, too, mainly goats. In wildlife and in the context of TB control at the wildlife-livestock interface, three main needs exist: (1) in-vivo tests for use in farmed or captive wildlife (deer farms, zoos), during wildlife translocations, or for capture-test-targeted culling schemes; (2) post mortem tests used for disease surveillance, epidemiology and intervention assessment purposes; and (3) environmental DNA detection, which is increasingly used in studies on transmission routes, biosafety assessment and herd-level risk certification. New tests are increasingly developing, generating opportunities for innovation in TB control.

In situations where wildlife and the environment contribute significantly to MTC circulation, TB-control schemes addressing only cattle, or only cattle and goats, are not enough: all suitable MTC maintenance hosts need to be taken into account. The first step is performing a proper epidemiological diagnosis, i.e. a comprehensive assessment of the role of each and every host and of the environment, as well as of their interconnections, in MTC maintenance. From a diagnostic point of view, this requires combining traditional diagnostic tools (applied to livestock) with post-mortem diagnosis (for instance for game species), serology (for wildlife and pigs, if present) and environmental DNA detection. Once the main players are identified, their populations and their TB prevalence need to be monitored through time. Inexpensive diagnostic tools are needed for this so-called integrated monitoring. Only after such an integrated monitoring scheme is running does it make sense to consider intervention. Again, combined, integrated disease control schemes are more likely to succeed. Such schemes will likely make use of biosafety and prevention,
population control, and vaccination. An example of such a strategy is available (in Spanish) at https://www.mapama.gob.es/es/ganaderia/temas/sanidad-animal-higiene-ganadera/patubes2017_3_tcm30-378321.pdf.

Joaquim Segalés

Joaquim Segalés got his DVM degree in 1991 at the Universitat Autònoma de Barcelona, UAB (Spain). After completing a 15-month research period at the University of Minnesota (USA), he defended his PhD at UAB. He got his Dipl. European College of Veterinary Pathologists (ECVP) by 2000, and the Dipl. European College of Porcine Health Management (ECPHM) by 2004. Dr. Segalés was a founding member of the ECPHM and president of this College between 2013 and 2016. He is an Associate Professor at the Veterinary School of the UAB (within the Department of Animal Health and Anatomy). He is also a researcher of the Centre de Recerca en Sanitat Animal (CReSA) and was its director during the period 2012–17. Dr. Segalés also serves as a diagnostican at the Pathology Department of the Veterinary School of Barcelona since 1996; he was the responsible for the pathological diagnostic activity in swine in the period 1996–2012. Dr. Segalés has been involved in research of swine diseases since 1993, mainly infectious diseases (including infections by porcine reproductive and respiratory syndrome virus (PRRSV), Aujeszky’s disease virus, porcine circovirus type 2 (PCV2), swine hepatitis E virus, swine Torque teno sus viruses (TTSuV), Actinobacillus pleuroneumoniae, Haemophilus parasuis and Mycoplasma hyopneumoniae). He has co-authored more than 280 articles in international peer-reviewed journals, and has recently started working on MERS (Middle East Respiratory Syndrome)-coronavirus infection animal models.

EMERGING AND RE-EMERGING PIG VIRAL DISEASES AND INFECTIONS: WHAT CAN BE EXPECTED IN THE FUTURE?

Joaquim Segalés

Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona and Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Emerging infectious diseases (EID) are characterized by increasing incidence following its first introduction into a new host population or in an existing one as a result of long-term changes in its underlying epidemiology. This concept also includes those diseases linked to pathogens expanding into an area in which were not previously reported, or those that changed significantly its clinical-pathological presentation. The number of novel conditions in swine included under the concept of emerging and re-emerging diseases has increased significantly during last 20 – 30 years. Most of them are infectious diseases, being those of viral origin of great importance. Their transmissibility and maintenance into a population is favoured by a number of phenomena, including intensive rearing practices and globalized/international trading.

Besides those novel or re-emerging pathogens able to cause disease, there are a number of newly discovered viruses for which no evidence disease association does exist. For example, from 1985 to 2010, novel pathogen species (all types) were identified at an average annual rate of 3 in pigs. The advent of modern diagnostic and research methodologies, sometimes without the need of previous knowledge about the putative pathogen (i.e., high throughput sequencing), has increased significantly the number of microorganisms that are infecting animals. In consequence, a complex scenario with novel infectious agents with unknown importance is being faced nowadays by researchers and veterinarians.

The objective of the present review is to discuss about new swine diseases or novel presentations of already known diseases, as well as newly recognized infections with an unknown pathogenic effect in pigs. Such scenario implies to play with certainties and uncertainties, since last 30 years taught us about:

- The emergence of global diseases for which there is still not a clear definitive solution (i.e., porcine reproductive and respiratory syndrome)
- The emergence of global diseases for which the pathogen existed long before, but overt disease was only recognized recently (i.e., porcine circovirus 2-systemic disease)
- The emergence of global diseases for which the pathogen has apparently varied in virulence (i.e., porcine epidemic diarrhea)
- The emergence of diseases that were not geographically expected in certain parts of the world (i.e., African swine fever in the Russian Caucasus and now in China)
• The recognition of putative novel viruses for old diseases (i.e., atypical porcine pestivirus as cause of congenital tremors type AII)
• The discovery of viruses that were not novel but considered potential causes of zoonosis (i.e., hepatitis E virus)
• The discovery of viruses that were not novel with unknown outcome related with its infection, although considered to be harmless (i.e., torque teno sus viruses)
• The discovery of viruses from which we do not have idea about its disease potential, if any (i.e., porcine circovirus 3)
The list of new recognitions, identifications and discoveries is much longer and will definitively increase in the future. Can we predict the impact of these new viruses?

Bruno Garin-Bastuji

The Unit previously headed by Dr GARIN-BASTUJI is dealing with the bacterial diseases of animals with a high level of risk for (human) public health and with a high economical incidence in livestock (Anthrax, Brucellosis, Chlamydiosis, Glanders, Mycobacteria and Tularemia). The Unit’s mission is to give a scientific and technical support to national, European and international (OIE, FAO, WHO, IAEA) bodies for the implementation and evaluation of relevant regulations and standards. The Unit’s tasks are essentially those of a reference laboratory: scientific and technical expertise, identification of bacterial strains, confirmation of cases or outbreaks, organisation of proficiency ring-trials, control of diagnostic reagents and vaccines, serological expertises, training and information. In terms of research and development, the work of the Unit concerns (i) the development of molecular tools for studying the epidemiology of bacterial strains and, (ii) the development, assessment and validation of direct (molecular biology) or indirect (immunology) diagnostic tools and their insertion in a sanitary decision system validated at the epidemiological level.

Up to now, he has been expert for several national, European and international organisations (OIE, WHO, FAO, IAEA, European Commission) for the diagnosis and control of animal and human brucellosis. He has been consultant for that purpose in several countries of Europe, Northern and South Africa, South America, Middle East, Asia and Oceania. He has attended more than 70 seminars/congresses in France and abroad, and has been co-author of ca. 200 scientific and technical communications in scientific and technical meetings. He has collaborated to ca. 100 original scientific publications in peer-reviewed journals or textbooks and ca. 100 popularisation publications or reviews. He is also the author or co-author of several national/EU/OIE SOPs for the diagnosis and control of animal brucellosis and has been involved in ca. 200 national and EU expert scientific and technical opinions.

Since 2014, he has been serving as a scientific adviser, as regards, in particular, EU and international reference laboratory activities and cooperation projects. He is also the Executive Editor of the new formula of Euroreference.

EUROREFERENCE: SHARING AND PROMOTING REFERENCE ACTIVITIES IN ANIMAL AND PLANT HEALTH, FOOD AND DRINKING WATER SAFETY

Bruno Garin-Bastuji1, Gilles Salvat2, on behalf of Euroreference Editorial Board

1 Euroreference Executive Editor
2 Euroreference Editor-in-Chief

French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France

Euroreference is a European online journal (www.euroreference.eu), published twice a year, in English (UK) and dealing specifically with reference activities in the areas of animal & plant health and food & drinking water safety. It aims at facilitating information dissemination and sharing among all referencing stakeholders in the area.

The Euroreference magazine, created by ANSES in 2009, has been made available in 2016, after 13 issues coordinated by ANSES, in a new format produced jointly by a group of institutions from several European Union Member States as well as by EPPO1, making it a collective publication devoted to promoting the dissemination of knowledge at European and international levels. It offers scientific and technical articles of interest to health protection laboratories and institutions involved in reference activities.
throughout Europe. Euroreference is thus designed to help enhance efficiency across a range of European reference activities.

One of its challenges is to promote the exchange of tools and methods and to encourage closer relationships between reference laboratories in different regions and countries, as well as to publish specialist knowledge, with the aim of achieving a more robust and efficient animal, plant and food health protection system in Europe. By facilitating the sharing of experience and the development of scientific knowledge in the field of analytical reference work, Euroreference seeks to promote this dynamic approach at the European level.

EuroReference focuses on scientific knowledge and news and deals with numerous issues concerning reference lab activities: laboratory diagnostic and analytical methods, validation studies, standard and reference materials, reagent standardisation, inter-laboratory comparisons, scientific and technical results as well as European and international projects or networking in the area, regulations governing reference activities, standardisation and quality assurance, etc. It contains news, comments, letters, dispatches and scientific and technical original or review papers. As a common forum for the members of the networks of reference laboratories and all the players concerned, the targeted public includes scientists, engineers and technical staff of testing laboratories, reference laboratories in other Member States, national reference centres, relevant Ministries and other regulatory or standardisation bodies, as well as several operators such as animal health veterinarians, physicians or chemists involved in public health. All articles are peer-reviewed by experienced scientists, one of which belonging to a consortium institution member. However authors may come from any scientific institution throughout the world. Recently, a DOI number has been included on each article via Zenodo, the European Research data repository, with the aim of promoting the journal indexing in international library databases.

Our aim is to convert Euroreference to a truly European journal, thus strengthening the network of EU laboratories working in these sectors and consolidate EU efficiency.

Sandra Blome

Sandra Blome has long-term experience (more than 15 years) in working with transboundary viruses under high containment conditions up to BSL 3+ including animal experiments with different domestic and wild suids and is responsible for the Germany National Reference Laboratories for African and classical swine fever.

Her research focuses on studies on pathogenesis of viral infectious diseases with particular emphasis on virus-host interaction and diagnostics/vaccine development. She was part of different projects focusing on African swine fever e.g. ASFORCE (FP7), ASF STOP, and leads the FLI-internal research network on ASF.

AFRICAN SWINE FEVER – BETWEEN THE POLES OF TEXTBOOK, HISTORY AND CURRENT SITUATION

Sandra Blome

Friedrich-Loeffler-Institute, Greifswald – Insel Riems, Germany

African swine fever (ASF) is one of the most important epizootic diseases threatening international animal health and profitable pig production in developed and developing countries. The eponymous virus, ASF virus (ASFV), is currently the only member of the Asfarviridae family and the genus Asfivirus contained therein. In its natural distribution area, the countries of Sub-Saharan Africa, the pathogen is transmitted asymptomatically between soft ticks of the genus Ornithodoros and African wild boar (warthogs and bush pigs). However, if the pathogen enters the domestic pig population, severe, mostly fatal forms of disease associated with the symptoms of a viral haemorrhagic fever prevail. European wild boar are also fully susceptible and cannot be compared with African wild suids in terms of disease progression and dynamics. Out of the syrletic cycle, the virus can be directly and indirectly transmitted without its competent vector. Since 2007, highly virulent ASFV strains have spread across the Trans-Caucasian countries and the Russian Federation into the European Union. In the meantime, the disease affects the Baltic EU Member States,
Poland, Hungary, the Czech Republic, and Romania. In many areas, wild boar are primarily affected, which makes the fight much more difficult, especially in the absence of safe and efficacious vaccines. Arriving in the EU, the disease has shown a dynamic that was not predicted or assumed based on historical data: there was neither a self-limitation/extinction nor a rapid spread. For the first time, the disease was able to establish itself independent of domestic pigs in the wild boar population. Many transmission pathways and the epidemiology of the disease must therefore be re-reviewed and evaluated. In detail, there is a serious lack of knowledge regarding the possible role of mechanical vectors (tabanids, mosquitoes, hard ticks), the ultimate fate of convalescent, possibly virus-bearing animals, and the full characterization of the viral strains involved. Moreover, data wild boar biology are fragmentary when it comes to home range, behavior towards carcasses, intensity of social interactions and mingling of animals of different sounders etc.

The talks will focus on areas where textbook knowledge and current disease dynamics to not match. In addition, the outcome of recent studies will be addressed and discussed.

Piet van Rijn

After his PhD at Leiden University the Netherlands in 1990, he has started his career at the Central Veterinary Institute in Lelystad, and is currently heading several research projects on diagnostics and vaccine development at Wageningen Bioveterinary Research in Lelystad, the Netherlands.

Initially, he has performed molecular virology research aiming vaccine development for animal diseases caused by different viruses, such as Classical Swine Fever, Bovine Virus Diarrhoea, and Porcine Respiratory and Reproduction Syndrome. Since 2002, Piet is heading statutory tasks for many exotic viral diseases. In 2006, he has founded the “Network of Excellence for Epizootic Disease Diagnosis and Control” (EPIZONE). In 2013, Piet has been appointed as extraordinary professor at the North West University, Potchefstroom, South Africa.

In the last decade, his research has strongly focused on bluetongue virus and African horse sickness virus. Currently, Piet is leading research projects on vaccine development and vector competence. His special interests are molecular interactions and biological processes involved in replication of these insect borne orbiviruses in mammals (the host) and in arthropods (the insect vector). His research has led to a novel approach for vaccine development, named Disabled Infectious Single Animal vaccines.

BLUETONGUE IN EUROPE, THE PAST, THE PRESENT AND THE FUTURE WITH A FOCUS ON DIAGNOSTICS

Piet A. van Rijn

Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands

Department of Biochemistry, North-West University, Potchefstroom, South Africa

Bluetongue (BT) caused by the insect borne orbivirus BTV (Orbivirus, Reoviridae) is a notifiable virus disease of ruminants according to the World Organization for Animal Health (OIE). The BTV particle contains ten genome segments S1−10 of double stranded RNA encoding seven structural proteins VP1−7, present in the virus particle, and at least four non-structural proteins NS1−NS4, expressed in the infected cell. Historically, the BTV species consists of 24 BTV serotypes showing no or low cross protection. BTV transmission is almost completely dependent on competent biting Culicoides midges. Large parts of the world are endemic for BTVs associated with the presence of competent midge species. In the last decade, expansion of affected areas has been shown; northwards in Europe and the USA and southwards in Australia. In the same period, new serotypes have been discovered. Currently, >28 serotypes have been recognized based on genetic analyses of S2. More importantly, BTV and its competent midge vector seem to establish in formerly BTV-free areas, likely because of global warming and changed environmental conditions beneficial for the competent midges.

Since the end of the 20th century, several BTV serotypes have emerged in Europe (1, 2, 4, 8, 9, 16) by expansion from northern Africa and the Middle East to southern European countries. In August 2006, North-West Europe was very surprised by incursion of BTV8, a serotype never recorded in or close to Europe before. Large parts of Europe were affected in two following years and has demonstrated re-circulation after the winter (‘overwintering’) which is considered as free of active midges in the moderate climate. In 2008, BTV6 and 11 closely related to conventional live attenuated vaccines (LAVs) were
reported in NW Europe, although use of these LAVs was prohibited in Europe. Today, BTV is still present in southern Europe. Circulation of BTVs is very dynamic over the years and intends to expand northwards, like re-emerging of BTV8 in France, a new BTV4 reassortant in South East Europe, and expansion of BTV3 from Tunis to Sicily, Italy. Because of increased alertness and surveillance programs, new variants and atypical BTV serotypes 25 and 27 has been discovered in Europe. In summary, alertness and diagnostics have reduced losses due to Bluetongue. Safe, efficacious, and preferably broad protective or tailor-made DIVA vaccines but above all accepted and affordable vaccine will be needed to further minimize economic losses eventually aiming the eradication of Bluetongue. Compatible DIVA assays will be needed to survey vaccinated livestock for BTV circulation. Laboratories and research institutions have developed and incorporated diagnostics for BTV and BTV antibodies. Proficiency testing well organized by the EURL for >10 years demonstrates that EU member states are well equipped to diagnose BT. Generally, serogroup specific real time RT-PCR tests and commercially available ELISAs are used for frontline diagnostics.

BTV detection by virus isolation (VI) as diagnostic test has been completely replaced by high throughput PCR diagnostics. VI is however still operational to culture virus from index cases aiming fundamental virological research. In general, panBTV PCR tests are used to confirm BTV infection followed by serotyping of the virus with serotype specific PCR assays or sequencing of S2. PanBTV PCR tests detect BTV as early as 1–2 days after experimental infection, irrespective of the serotype. Further, PCR positivity lasts much longer than the infectious period, e.g. up to 200 days post infection in cattle. Thus, PCR tests are suitable to diagnose BTV infected animals. BTV PCR tests target BTV specific regions in several highly conserved genome segments, like S1 and S7, but also in highly targets in variable S10. Obviously, serotype specific PCR tests target highly variable S2 encoding serotype dominant VP2 protein. Serotype identification is important for epidemiological studies aiming to trace the source of a BTV outbreak. In addition, the serotype must be determined to vaccinate with the appropriate vaccine. Further, to detect wild type BTV in vaccinated livestock, DIVA PCR tests could be used compatible with used BT DIVA vaccine. Finally, a tremendous progress in the field of next generation sequencing will shorten the time between detection through frontline panBTV PCR testing and detailed like full genome information. Full genome sequences of all kind of BTV variants will become massively available in the future. This genetic information is important for in silico validation of panBTV frontline diagnostics and serotype specific PCR tests. Serogroup specific ELISAs detecting antibodies against immunodominant VP7 protein of BTV are commercially available. Several setups of VP7-based high throughput ELISAs such as competition -, indirect -, and sandwich ELISAs have been developed. All assays are sensitive and specific and detect animals as early as one week after experimental infection. VP7 antibodies can also be detected in milk samples. Milk samples of professional dairy cattle farms are often available as these are collected for surveillance programs of other bovine diseases. Detection of BTV-antibodies is very sensitive, and a very low percentage of seropositive lactating cows can be detected by testing one single sample of bulk milk. VP7-based ELISAs cannot be used as DIVA assays, since applied BT vaccines are traditionally virus-based BT vaccines such as LAV or inactivated BTV vaccine inducing high antibody titres against VP7. Neutralizing antibodies are serotype specific but are less sensitive and are only detected later after infection. Anyway, neutralization assays are also time consuming, laborious and therefore expensive. There is a need for serotype specific ELISAs, Elispot assays or other serological tools to determine the serotype specific immune response. At the moment, there is a strong preference for serotype specific PCR assays or next generation sequencing to determine the serotype of circulating BTV. Expectedly, Bluetongue will maintain and re-emerge in Europe and other parts of the world in the coming decades. Quality controlled, high throughput, rapid BT diagnostics has significantly improved disease control but rapid serotype specific diagnosis and detailed identification of emerging BTVs should be improved. Further, safe, efficacious, affordable and generally accepted BT DIVA vaccines with will reduce losses. For this, highly specific and sensitive DIVA assays that are compatible with the used vaccine must be developed and validated, primarily by comparison with frontline diagnostics for Bluetongue.
Antonia Ricci

Antonia Ricci graduated in Veterinary Medicine in 1993 at Bologna University, and she received a Postgraduate certificate in Diagnosis and prevention of animal diseases in 1994, and a Postgraduate specialisation in Food Hygiene in 1997 at the University of Torino. She headed until February 2018 the Food Safety Department of Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), in Italy, and in March 2018 she was nominated Director of Science of IZSVe. She heads since 1999 the National Reference Laboratory for Salmonellosis in Italy, which in 2007 was nominated OIE Reference Laboratory. From 2009 to 2018 she was member (and chair since 2015) of the Biohaz Panel of the European Food Safety Authority (EFSA). Her main fields of expertise are microbiology, epidemiology and control of foodborne zoonoses, antimicrobial resistance; in these areas she has given consultancy to national and international bodies, such as the European Commission, OIE, WHO, and she leads several research projects.

“IT’S TIME TO ACT: THE EU ENGAGEMENT AGAINST ANTIMICROBIAL RESISTANCE”
Antonia Ricci

Director of Science, Istituto Zooprofilattico Sperimentale delle Venezie, Italy

Antimicrobial resistance is a wide and complex concept, which involves different competences in the framework of veterinary public health.

Monitoring and surveillance of antimicrobial resistance have the following main objectives:

• detect emergence, and understand dissemination of AMR.
• provide data relevant for risk assessment.
• plan interventions and measure their effects.

According to this strategy, at European level the three agencies competent in this sector (EFSA - European Food Safety Authority, ECDC - European Center for Disease prevention and Control and EMA - European Medicines Agency) are carrying out several activities, some of them summarised below.

Analysis of antimicrobial use and resistance (JIACRA)

AMC in both sectors, expressed in mg/kg of estimated biomass, were compared at country and European level. Substantial variations between countries were observed in both sectors.

Univariate and multivariate analyses were applied to study associations between AMC and AMR. In 2014, the average AMC was higher in animals (152 mg/kg) than in humans (124 mg/kg), but the opposite applied to the median AMC (67 and 118 mg/kg, respectively). In 18 of 28 countries, AMC was lower in animals than in humans. Univariate analysis showed statistically-significant associations between AMC and AMR for fluoroquinolones and Escherichia coli in both sectors, for 3rd- and 4th-generation cephalosporins and E. coli in humans, and tetracyclines and polymyxins and E. coli in animals. In humans, there was a statistically-significant association between AMC and AMR for carbapenems and polymyxins in Klebsiella pneumoniae. Consumption of macrolides in animals was significantly associated with macrolide resistance in Campylobacter coli in animals and humans. Multivariate analyses demonstrated that 3rd- and 4th-generation cephalosporin and fluoroquinolone resistance in E. coli from humans was associated with corresponding AMC in humans, whereas resistance to fluoroquinolones in Salmonella spp. and Campylobacter spp. from humans was related to consumption of fluoroquinolones in animals. These results suggest that from a ‘One-health’ perspective, there is potential in both sectors to further develop prudent use of antimicrobials and thereby reduce AMR.

Joint EFSA-EMA opinion on the reduction of the need to use antimicrobials in animal husbandry (RONAFA)

This Scientific Opinion (EFSA Journal 2017;15(1):4666, 245 pp. doi:10.2903/j.efsa.2017.4666) was published by EFSA and EMA following the request of the European Commission to review measures taken
in the EU to reduce the need for and use of antimicrobials in food-producing animals, and the resultant impacts on antimicrobial resistance (AMR).

Reduction strategies have been implemented successfully in some Member States. Such strategies include national reduction targets, benchmarking of antimicrobial use, controls on prescribing and restrictions on use of specific critically important antimicrobials, together with improvements to animal husbandry and disease prevention and control measures. Due to the multiplicity of factors contributing to AMR, the impact of any single measure is difficult to quantify, although there is evidence of an association between reduction in antimicrobial use and reduced AMR. To minimise antimicrobial use, a multifaceted integrated approach should be implemented, adapted to local circumstances.

Recommended options include: development of national strategies; harmonised systems for monitoring antimicrobial use and AMR development; establishing national targets for antimicrobial use reduction; use of on-farm health plans; increasing the responsibility of veterinarians for antimicrobial prescribing; training, education and raising public awareness; increasing the availability of rapid and reliable diagnostics; improving husbandry and management procedures for disease prevention and control; rethinking livestock production systems to reduce inherent disease risk.

Joint ECDC-EFSA-EMA opinion on outcome indicators on surveillance of AMR and use of antimicrobials

This is also a joint opinion by ECDC, EFSA and EMA, which have established a list of harmonised outcome indicators to assist European Union Member States in assessing their progress in reducing the use of antimicrobials and antimicrobial resistance (AMR) in both humans and food-producing animals (EFSA Journal 2017;15(10):5017, 70 pp. https://doi.org/10.2903/j.efsa.2017.5017ISSN:1831-4732).

For humans, the indicators for antimicrobial consumption include: total consumption of all antimicrobials for systemic use, ratio of community consumption of certain classes of broad-spectrum to narrow-spectrum antimicrobials, and consumption of a series of both broad- and narrow-spectrum antimicrobials frequently used in healthcare settings. Proposed indicators for a series of both broad- and narrow-spectrum antimicrobials are: meticillin-resistant Staphylococcus aureus and 3rd-generation cephalosporin-resistant Escherichia coli, Klebsiella pneumoniae resistant to several important antimicrobials, penicillin- and macrolide-resistant Streptococcus pneumoniae, and emerging carbapenem-resistant Klebsiella pneumoniae. For food-producing animals, indicators for antimicrobial consumption include: overall sales of veterinary antimicrobials, sales of 3rd- and 4th-generation cephalosporins, sales of quinolones, and sales of polymyxins. Finally, indicators for AMR in food-producing animals are proposed: full susceptibility to a predefined panel of antimicrobials, proportion of samples containing ESBL-/AmpC-producing E. coli, multi-drug resistance, and resistance to ciprofloxacin, in indicator E. coli. For all sectors the chosen indicators, which should be reconsidered at least every five years, are expected to be valid tools in monitoring antimicrobial consumption and AMR.

Emma Howson

Emma joined The Pirbright Institute as a PhD student, focusing on the development and application of pen-side molecular diagnostic assays for detection of vesicular viruses. Emma specialises in real-time reverse transcription (RT)-PCR, loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) for the diagnosis of foot-and-mouth disease in field and low-resource laboratory settings. She has spent time working within high-containment laboratory facilities and has conducted collaborative research projects with a network of overseas partners in East Africa. Emma has also worked in industry for OptiGene Ltd., a small biotechnology firm which delivers molecular diagnostic solutions.

TECHNOLOGICAL ADVANCES IN VETERINARY DIAGNOSTICS: OPPORTUNITIES TO DEPLOY DECENTRALISED TESTS TO DETECT PATHOGENS AFFECTING LIVESTOCK

Emma L A Howson1, Bryony Arsmson1, Tiziana Lembo2, Sarah Cleaveland2, William M Nelson3, Rolf Rauh3, Donald P King1 & V.L. Fowler

1 The Pirbright Institute, Pirbright, Surrey, United Kingdom
2 Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, United Kingdom
3 Tetracore, Inc., 9901 Belward Campus Drive, Suite 300, Rockville, MD 20850, USA
Infectious livestock diseases pose important threats to sustainable food production, with viral diseases such as foot-and-mouth disease (FMD) amongst the most important. Accurate and rapid diagnostic tests are an essential component of contingency plans to detect, control and eradicate these threats. Diagnosis currently involves a pipeline that starts with clinical suspicion, followed by collection of samples, transport of specimens to a centralised laboratory setting (e.g. national / international reference laboratories), analysis of samples using a range of diagnostic tests and reporting of results. However, the transport of specimens from the field to the laboratory can be a lengthy process that can delay critical decision-making and severely affect the quality of the samples. Furthermore, many diagnostic tests require well-equipped laboratories, often problematic for endemic countries which lack infrastructure and financial resources for disease surveillance and diagnostics. These important limitations of centralised diagnostic testing have motivated the development of prototype tools for the rapid, simple detection of livestock pathogens, based on advancements in the development of technologies for personalised human medicine. However, many of these tests are not yet routinely used or commercially available. In this talk, I will discuss the most promising examples of such assays, and highlight the challenges that remain to transition these tests from applied research and development into routine use.
QIAGEN Animal Health is now INDICAL BIOSCIENCE

Improving diagnostics for better animal and human health

With over two decades of experience, INDICAL (formerly QIAGEN Animal Health) is a leading provider of molecular diagnostic workflows, the protocols for their use and the support that empowers our customers every day. Our products help you to reliably identify animal diseases to protect animal and human health.

Meet us at: booth #11 | www.indical.com | Follow us on: LinkedIn
Applied biotechnology for health surveillance and disease prevention
Programme

15. 10. 2018

08:30–09:00, EUROPE

SPECIAL SESSION

SS01 OPENING CEREMONY
Chair: Thierry Van den Berg

09:00–09:45, EUROPE

KL01 ENZOOTIC DISEASES – KEYNOTE LECTURE
Chairs: Hans Nauwynck, Willie Loeffen

09:00 CURRENT CHALLENGES IN TUBERCULOSIS DIAGNOSIS: NEW TESTS AND THEIR APPLICATIONS IN CONTROL STRATEGIES IN WILDLIFE
Keynote Speaker: Christian Gortazar Schmidt

09:45–10:45, EUROPE

OP01 ENZOOTIC DISEASES – ORAL PRESENTATIONS
Chairs: Willie Loeffen, Hans Nauwynck

09:45 MYCOBACTERIUM AVIUM PARATUBERCULOSIS ANTIBODIES IN MILK AS A PROGNOSTIC INDICATOR OF JOHNES DISEASE IN DAIRY COWS
Sibley, R.

10:00 DETECTION OF ACTIVE INFECTION OF NEW-BORN CALVES BY MYCOBACTERIUM AVIUM SUBSP. PARATUBERCULOSIS (MAP) IN FIRST DAYS OF LIFE
Pelletier, C., Haas, C., Dangien, C., Meunier, A., Caplain, C., Pez, F., Potaufeux, V., Clarke, B., Rees, C., Swift, B., Sellal, E.

10:15 CONSTRUCTION OF THE REFERENCE STANDARD FOR THE DETECTION AND QUANTIFICATION OF MYCOBACTERIUM AVIUM SUBSP. PARATUBERCULOSIS BY QUANTITATIVE PCR IN FAECES
Beinhauerova, M., Slana, I., Kralik, P.

10:30 EARLY DIAGNOSIS OF MYCOPLASMA HYOPNEUMONIAE: COMPARISON OF THREE DIFFERENT LIVE PIG SAMPLING TECHNIQUES
Vangroenweghe, E., Holst, S., Betlach, A., Evelsizer, R., Pieters, M.
11:15 – 12:00, EUROPE

KL02 ENZOOTIC DISEASES II – KEYNOTE LECTURE

Chairs: Willie Loeffen, Hans Nauwynck

11:15 EMERGING AND RE-EMERGING PIG DISEASES AND INFECTIONS: WHAT CAN BE EXPECTED IN THE FUTURE?

Keynote Speaker: Joaquim Segalés

12:00 – 13:15, EUROPE

OP02 ENZOOTIC DISEASES II – ORAL PRESENTATIONS

Chairs: Willie Loeffen, Hans Nauwynck

12:00 EXPERIMENTAL INOCULATION OF DOGS WITH CANINE CIRCOVIRUS-1 (CANINE CV): CLINICAL SIGNS, VIRUS SHEDDING AND TISSUE DISTRIBUTION

Maes, R., Derscheid, R.J., Thiwong, T., Kiupel, M.

12:15 DETECTION OF ANTIBODIES TO VARIOUS EUROPEAN AND ASIAN STRAINS OF VARIANT INFECTIOUS BRONCHITIS VIRUS USING COMMERCIAL ANTIBODY ELISA KITS

Domingo, D., Bonnard, M., Guillassou, S., de Wit, S.

12:30 MOLECULAR IDENTIFICATION OF PCV3 INFECTION IN SEVERAL SPANISH PIG FARMS

Benito Zuniga, A., Arnal, J.L., Serrano, J.D., Barrios, J., Ondarra, M., Chacón, G.

12:45 COMPARISON OF DIFFERENT SEROLOGICAL AND MOLECULAR TESTS FOR THE DETECTION OF SMALL RUMINANT LENTIVIRUSES (SRLVS) IN BELGIAN SHEEP AND GOATS

Michiels, R., Van Mael, E., Quienet, C., Mostin, L., Cay, B., De Regge, N.

13:00 VALIDATION ACCORDING TO OIE CRITERIA OF THE SALMONELLA ABORTUSOVIS TEST

14:00 – 14:45, EUROPE

KL03 STANDARDIZATION, VALIDATION AND SURVEILLANCE – KEYNOTE LECTURE

Chairs: Petr Václavek, Eefke Weesendorp

14:00 EUROREFERENCE: SHARING AND PROMOTING REFERENCE ACTIVITIES IN ANIMAL AND PLANT HEALTH, FOOD AND DRINKING WATER SAFETY

Keynote Speaker: Bruno Garin-Bastuji

14:45 – 15:30, EUROPE

OP03 STANDARDIZATION, VALIDATION AND SURVEILLANCE – ORAL PRESENTATIONS

Chairs: Petr Václavek, Eefke Weesendorp

14:45 DIAGNOSTIC STRUCTURE AND PROCESS WITHIN A NATIONAL REFERENCE LABORATORY

Weesendorp, E., Loeffen, W.
15:00 VERIFICATION OF QUANTIFICATION STANDARDS USED IN QUANTITATIVE PCR BY DROPLET DIGITAL PCR
Beinhauerova, M., Králik, P.

15:15 DEVELOPMENT AND VALIDATION OF A MULTIPLEX-TANDEM (MT) PCR FOR THE DIAGNOSIS OF BOVINE RESPIRATORY DISEASE COMPLEX
Rocchi, M., Turnbull, D., Laming, E., Connelly, M., Maley, M.

16:00–17:00, EUROPE

OP04 STANDARDIZATION, VALIDATION AND SURVEILLANCE II – ORAL PRESENTATIONS
Chairs: Petr Václavek, Eefke Weesendorp

16:00 THE USE OF WEB BASED TOOLS TO SUPPORT INTERPRETATION OF IDEXX MILK ELISA JOHNE’S RESULTS IN THE UK
Orpin, P.

16:15 BAYESIAN ASSESSMENT OF TWO COMPETITIVE ENZYME-LINKED IMMUNOSORBENT ASSAYS FOR THE DETECTION OF BOVINE VIRAL DIARRHOEA VIRUS ANTIBODIES IN BOVINE SERA
Saegerman, C., Christian, Q., Guy, C., Fabiana, D.P.

16:30 COMPARISON OF PTS RESULTS BETWEEN ROBUST AND TRADITIONAL METHOD
Swart, W.

16:45 AN INTERLABORATORY TRIAL TO EVALUATE THE RELIABILITY OF PCR METHODS FOR MYCOPLASMA BOVIS DIAGNOSIS IN SIX EUROPEAN COUNTRIES
16. 10. 2018

08:30–09:15, EUROPE

KL04 EPIZOOTIC, EMERGING AND VECTORBORNE DISEASES OF LIVESTOCK – KEYNOTE LECTURE
Chairs: Wim Van der Poel, Stéphan Zientara

08:30 AFRICAN SWINE FEVER – BETWEEN THE POLES OF THE TEXTBOOK, HISTORY AND CURRENT SITUATION
Keynote Speaker: Sandra Blome

09:15–10:15, EUROPE

OP05 EPIZOOTIC, EMERGING AND VECTORBORNE DISEASES OF LIVESTOCK – ORAL PRESENTATIONS
Chairs: Stéphan Zientara, Wim Van der Poel

09:15 FIRST REPORT OF LINEAGE 5A VELOGENIC AVIAN PARAMYXOVIRUS IN THE NORTH-WEST EUROPE, BELGIUM
Steensels, M., Rauw, F., Roupie, V., Van Borm, S., Lambrecht, B.

09:30 DEVELOPMENT AND EVALUATION OF A MULTIPLEX CLASSICAL RT-PCR FOR SIMULTANEOUS DETECTION AND TYPING OF FMDV IN WEST AFRICA

09:45 DO COMMERCIALLY AVAILABLE LYSIS BUFFERS INACTIVATE FOOT-AND-MOUTH DISEASE VIRUS?
Wood, B., Mioulet, V., Henry, E., Gray, A., Thapa, B., Diederich, S., Hoffmann, B., Beer, M., King, D., Eschbaumer, M.

10:00 IDENTIFICATION AND MOLECULAR CHARACTERISATION OF A NOVEL GROUP A ROTAVIRUS IN PIGEONS DURING THE 2016–2017 OUTBREAKS IN AUSTRALIA
Wang, J., Chen, H., Shan, S., Cramer, S., Walker, S., Bergfeld, J.

10:45–11:30, EUROPE

KL05 EPIZOOTIC, EMERGING AND VECTORBORNE DISEASES OF LIVESTOCK II – KEYNOTE LECTURE
Chairs: Stéphan Zientara, Wim Van der Poel

10:45 BLUETONGUE IN EUROPE, THE PAST, THE PRESENT AND THE FUTURE
Keynote Speaker: Piet van Rijn
11:30–12:30, EUROPE

OP06
EPIZOOTIC, EMERGING AND VECTORBORNE DISEASES OF LIVESTOCK II – ORAL PRESENTATIONS
Chairs: Stéphan Zientara, Wim Van der Poel

11:30
RT-PCR DECENTRALIZATION FOR BTV-4 DIAGNOSIS IN REGIONAL LABORATORIES IN THE MANAGEMENT OF THE EMERGENCE OF BTV-4 IN FRANCE IN 2017
Zientara, S., Breard, E., Viarouge, C., Gorlier, A., Grandcollot-Chabot, M.C., Vitour, D., Sailleur, C.

11:45
INVESTIGATION OF THE ROLE OF RACING PIGEON IN THE DISPERSION PROFILE OF CLADE 2.3.4.4.B. HPAI
Steensels, M., Rauw, F., Bardos, I., Madeira, D., Van Borm, S., Lambrecht, B.

12:00
FEATHERS AS SAMPLE FOR EFFICIENT DETECTION OF CLADE 2.3.4.4. H5N8 HPAI VIRUSES IN DUCKS

12:15
DETECTION AND IDENTIFICATION OF YEAST IN MILK SAMPLED FROM COW WITH SUBCLINICAL MASTITIS
Moravkova, M., Huvarova, V., Slany, M., Cervinkova, D., Vlkova, H., Jaglic, Z.

13:00–14:00, EUROPE

SYM 01
SALMONELLA ABORTUSOVIS: DIATHEVA SOLUTION

13:00
SALMONELLA ABORTUSOVIS: DIATHEVA SOLUTION 1
Chiara Francesca Magistrali

13:20
SALMONELLA ABORTUSOVIS: DIATHEVA SOLUTION 2
Veronica Ceppetelli

13:40
SALMONELLA ABORTUSOVIS: DIATHEVA SOLUTION 3
Manuela Tittarelli

14:00–14:45, EUROPE

KL06
ONE HEALTH: FOODBORNE PATHOGENS, ZOONOSIS AND ANTIBIORESISTANCE – KEYNOTE LECTURE
Chairs: Grégoire Fabien, Claude Saegerman

14:00
IT’S TIME TO ACT: THE EU ENGAGEMENT AGAINST ANTIMICROBIAL RESISTANCE
Keynote Speaker: Antonia Ricci

14:45–15:45, EUROPE

OP07
ONE HEALTH: FOODBORNE PATHOGENS, ZOONOSIS AND ANTIBIORESISTANCE – ORAL PRESENTATIONS
Chairs: Grégoire Fabien, Claude Saegerman

14:45
CAMPYLOBACTER JEJUNI/COLI DETECTION RATES IN FRESH BROILER MEAT BY CULTURAL ENUMERATION AND QUANTITATIVE REAL-TIME PCR
Overesch, G., Kuhnert, P.
15:00 FIRST LINE TYPING FOR BRUCELLA ABORTUS AND BRUCELLA MELITENSISS

15:15 GENOTYPING OF BACILLUS ANTHRACIS STRAINS CIRCULATING IN ITALY BASED ON SNPS AND 31-LOCUS MULTI LOCUS VNTR ANALYSIS

15:30 PREVALENCE OF VEROCYTOTOXIGENIC ESCHERICHIA COLI STRAINS IN RAW BEEF IN SOUTHERN ITALY
Nobili, G., La Bella, G., Basanisi, M.G., Nigro, M.S., La Saldana, G.

16:15–17:15, EUROPE

OP08 ONE HEALTH: FOODBORNE PATHOGENS, ZOONOSIS AND ANTIMICROBIOLOGICAL RESISTANCE II – ORAL PRESENTATIONS
Chairs: Grégoire Fabien, Claude Saegerman

16:15 ANTIMICROBIAL SUSCEPTIBILITY TESTING: EUCAST VERSUS CLSI?
Hofer, S., Perreten, V., Overesch, G.

16:30 NEW APPROACH FOR THE DETECTION OF TRICHINELLA SPIRALIS IN SLAUGHTERED PIGS
Braasch, J., Ostermann, S., Mackiewicz, M.

16:45 CHARACTERIZATION OF MRSA ISOLATED FROM VETS AND FARMERS BY WHOLE GENOME SEQUENCING
Kittl, S., Brodard, I., Heim, D., Andina-Pfister, P., Overesch, G.

17:00 SURVEY ON NOROVIRUS AND HAV PRESENCE IN SHELLFISH DURING WINTER SEASON 2017–2018 IN APULIA REGION (SE ITALY)
La Bella, G., Nobili, G., Basanisi, M.G., Nigro, M.S., Cafiero, M.A., Tola, S., La Saldana, G.
Broaderest Menu of qPCR Kits for Veterinary Diagnostics

Looking for an easy and fast solution for DNA /RNA detection in livestock, poultry, aquaculture and companion animals?

The genesig qPCR Kits offer DNA / RNA detection of bacterial, fungal, and viral pathogens in animals. With over 250 animal pathogen detection kits – we have a complete testing solution for your animal and pathogen of interest.

genesig qPCR Veterinary Detection Kits

- Sensitive detection to <100 copies of target
- Ambient shipping with lyophilised reagents
- Optimised for genesig q16 instrument and open platforms

genesig q16 instrument

- Quick and simple testing for rapid diagnosis in <2hour
- Easy to use for all user experience levels
- Small and portable - and can be used ANYWHERE

Optimised workflow solution

- Extracts DNA and RNA from almost all sample types
- >250 veterinary pathogens to choose from
- DNA/RNA detection instrument
- Results analysed and interpreted for you

We look forward to meeting you at our booth no.10

enquiry@primerdesign.co.uk | +44 (0) 23 8074 8830 | www.primerdesign.co.uk
Applied Biosystems™ animal health diagnostics solutions are built on a foundation of proven performance and innovation for the future. They combine decades of research investment and industry expertise—global and local—into a robust, cutting-edge offering from the world leader in serving science.

1949
Bovine tuberculosis—production of tuberculin purified protein derivative (PPD) for tuberculosis skin test begins at our facilities in the Netherlands, one of the world’s largest PPD production facilities.

1998
Bovine spongiform encephalopathy (BSE)—the Prionics™-Check WESTERN Kit detects the first BSE-positive cow in routine testing, preventing its meat from entering the food chain and helping avoid human infection.

2004
Bovine viral diarrhea (BVD)—the first VetMAX™ real-time PCR kit is developed and launched for the detection of BVD virus in Europe. It’s used in European countries to help eradicate the virus and monitor the disease.

2007
Bluetongue (BT)—VetMAX™ real-time PCR kits for all BT virus genotypes and kits for subtypes BTV1, BTV2, BTV4, BTV6, BTV8, BTV9, BTV11, and BTV16 detection are approved by the European Community Reference Laboratory (CRL). They are currently used by several European countries for outbreak detection.

2008
Porcine reproductive and respiratory syndrome (PRRS)—we launch VetMAX™ PRRSV reagents and controls for RNA detection of NA and EU PRRS virus strains.

2012
Foot-and-mouth disease (FMD)—with the addition of the Applied Biosystems™ PrioCHECK™ FMDV Type Asia1 and FMDV Type A ELISA test kits to the PrioCHECK™ FMDV NS and Type O kits, we offer the most extensive portfolio of proven solutions for FMD virus detection.

2014
Trichomoniasis (Trich)—the VetMAX™-Gold Trich Detection Kit is the first USDA-approved, real-time PCR test to detect Trichomonas foetus. Trich is a sexually transmitted disease that causes embryonic loss and infertility, resulting in significant economic loss within the cattle industry due to open (nonpregnant) and late-calving cows.

2014
Avian influenza (Al)—the VetMAX™-Gold AIV Detection Kit is the first USDA-licensed PCR-based kit for the detection of AI virus. It significantly improves outbreak detection, especially in import/export poultry products.

2015
Swine influenza (SI)—we offer two USDA-licensed VetMAX™-Gold real-time PCR kits for SI virus screening and subtyping to global pork producers for the rapid detection of this highly contagious viral infection of pigs.

2017
Q fever—we have the most extensive portfolio of diagnostic PrioCHECK™ ELISA and VetMAX™ real-time PCR kits enabling the detection and quantification of Coxiella burnetii in sheep, goats, and cattle. These products also help countries manage Q fever and its zoonotic risk.

Explore our comprehensive portfolio of solutions at thermofisher.com/animalhealth

For Veterinary Use Only. For In Vitro Use Only. Regulatory requirements vary by country; products may not be available in your geographic area. © 2018 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. COL07563 0818
17. 10. 2018

08:30–09:15, EUROPE

KL07 ADVANCES IN DIAGNOSTICS – KEYNOTE LECTURE
Chairs: Mia Vanrobaeys, Steven Van Borm

08:30
TECHNOLOGICAL ADVANCES IN VETERINARY DIAGNOSTICS:
OPPORTUNITIES TO DEPLOY DECENTRALISED TESTS TO DETECT
PATHOGENS AFFECTING LIVESTOCK
Keynote Speaker: Emma Howson

09:15–10:30, EUROPE

OP09 ADVANCES IN DIAGNOSTICS – ORAL PRESENTATIONS
Chairs: Mia Vanrobaeys, Steven Van Borm

09:15
PERFORMANCE OF A SYNTHETIC OPS ANTIGEN-BASED DIVA ASSAY
FOR THE DIAGNOSIS OF BRUCELLA ABORTUS IN CATTLE
Hines, S., Johnson, A., McGiven, J., Srikanth, S.

09:30
MALDI-TOF MASS SPECTROMETRY IDENTIFICATION OF FUNGAL
STRAINS: VALIDATION FOR THE VETERINARY PRACTICE
Becker, P., Hendrickx, M., Vanantwerpen, G., Goessens, S., Vercammen, F.,
Normand, A.C., Piarroux, R.

09:45
DEVELOPMENT OF MULTIPLEX TOOL FOR DETECTION OF PATHOGENIC
AGENTS IN FOOD AND ENVIRONMENT
Hrdy, I., Kralik, P., Vasickova, P., Reslova, N., Huvarova, V.

10:00
NEXT GENERATION SEQUENCING TO STUDY MULTIDRUG RESISTANT
SALMONELLA STRAINS
Reale, S., Bonanno, F., Sammarco, I., Bruno, F., Castelli, G., Vitale, F.

10:15
ACTINOBACILLUS PLEUROPNEUMONIAE SEROTYPING BY NOVEL
QPCR SYSTEM
Arnal Bernal, J.L., Gottschalk, M., Fernández Ros, A., Alfredo Ángel, B.Z., Chacón
Pérez, G., Sanz Tejero, C., Lacouture, S., Alzuguren Ramos, O., Baselga Domingo, R.

11:00–12:15, EUROPE

OP10 ADVANCES IN DIAGNOSTICS II – ORAL PRESENTATIONS
Chairs: Mia Vanrobaeys, Steven Van Borm

11:00
NOVEL IVD TOOLS FOR DIAGNOSING FILARIASIS IN HUMANS
AND ANIMALS
Latz, A.

11:15
BEAD-BASED MICROARRAY FOR THE SIMULTANEOUS DETECTION
OF ANTIBODIES TO ASFV AND CSFV
Sastre, P., Aira, C., Ruiz, T., Dixon, L., Blome, S., Rueda, P.

11:30
NANOPORE SEQUENCING IN CLINICAL VETERINARY VIROLOGY:
PROOF-OF-CONCEPT STUDIES AND PERSPECTIVES
Croville, G., Guérin, J.L.
11:45 DEVELOPING A MICROARRAY-ELISA SANDWICH IMMUNOASSAY FOR THE DIAGNOSIS OF SWINE ENTERIC DISEASES IN FECAL SAMPLES
Rivas, L., Pulido, J., López, L., Gómez-Laguna, J., Martin-Valls, G., Rodríguez, M.J.

12:00 DETECTION OF PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS PRRSV USING AN APTAMER-ANTIBODY SANDWICH ASSAY (ELAAS).

12:15–12:30, EUROPE

SS03 CLOSING CEREMONY
Chairs: Thierry Van den Berg
Breakthrough in multiplex testing for Swine Respiratory Diseases

- Screening and typing of large numbers of samples
- Unrivalled speed and accuracy
- Up to 10 tests at the same time
- Easy Elisa-type handling
- Saves on labor, time and disposables
- Saves on cost

Any combination possible of each:

- APP 1-9-11
- APP 2
- APP 3-6-8-15
- APP 4-7
- APP 5
- APP 10
- APP 12
- PCV2
- PRRS TYPE 1
- PRRS TYPE 2
- SIV

Biovet®

1-888-8BIOVET (+1-888-824-6838)
order@biovet-inc.com
List of Posters

P 01 A NEW REAL TIME RT-PCR FOR DETECTION AND DIFFERENTIATION OF AVIAN BORNAVIRUSES
Sigrist, B., Albini, S., Wolfrum, N.

P 02 UNDIAGNOSED Q FEVER ABORTION IN CATTLE ?
Boettcher, J., Nietherammer, F., Boehm, B., Kappe, E., Schade, B., Kupca, A., Alex, M.,
Turowski, V., Janowetz, B.

P 03 MASTITIS DIAGNOSIS UTILIZING A TURNKEY SOLUTION FROM THERMO FISHER
SCIENTIFIC’S ANIMAL HEALTH GROUP
Carreres, A., Conrad, R., Tebbs, R., Hoang, Q., Meza, D., Moine, S., Ripoche, E.,
Martin, E.

P 04 VALIDATION OF THE ID GENE™ PRRSV QPCR KIT
Castera, J., Le Goff, C., Despois, L., Gris-Deville, M., Grewis, L., Pourquier, P.

P 05 NEW APPROACH FOR SMALL RUMINANT LENTIVIRUS FULL GENOME
CHARACTERIZATION REVEALED THE CIRCULATION OF DIVERGENT STRAINS
Colitti, B., Coradduzza, E., Puggioni, G., Capuccio, M.T., Bertolotti, L., Rosati, S.

P 06 EVALUATION OF A NEW DOUBLE-ANTIGEN INDIRECT ELISA FOR THE SPECIFIC
DIAGNOSIS OF PORCINE BRUCELLOSIS
Comtet, L., Nathalie, P., Antoine, D., Claire, P., Alix, C., Maryne, J., Philippe, P.,
Bruno, G.B.

P 07 A NEW ELISA ASSAY FOR GLANDERS DIAGNOSIS
Comtet, L., Laroucau, K., Bertin, C., Colaneri, C., Madani, N., Roche, M., Pourquier, P.,
Lucia Santana, V., Saqib, M.

P 08 EXTENDED VALIDATION DATA OF ELISAS ON WILD BOAR, ORAL FLUID ELISA
PROTOTYPE, AND QPCR FOR AFRICAN SWINE FEVER DIAGNOSIS
Comtet, L., Roche, M., Castera, J.,Hourdoir, G., Laffont, M., Grewis, L., Pourquier, P.

P 09 NEW VALIDATION DATA FOR THE ID SCREEN® PRRS INDIRECT ELISA
Comtet, L., Olagnon, L., Pourquier, P.

P 10 REFINEMENT OF THE RAPID PASSAGE PROTOCOL FOR ISOLATION OF AVIAN
INFLUENZA VIRUS FROM SIX DAYS TO TWO DAYS
Coward, V., Hansen, R., Everest, H., Ceeraz, V., Russell, C., Cooper, J., Agyeman-Dua, E.,
Holland, A., Reid, S.M., Mynn, J., Dorsett, T., Brookes, S.M., Brown, I.H.

P 11 THE RESEARCH OF SEXED SEMEN OF BULLS-PRODUCERS
Borunova, S.F., Badmaev, O., Froshkina, D., Kochkonyan, A, Kishkinova, O.

P 12 A MOLECULAR METHOD AS REPLACEMENT FOR CLASSICAL SEROTYPING
OF THE MOST COMMON SALMONELLA FROM PORK AND POULTRY SECTORS
IN BELGIUM
Gand, M., Mattheus, W., Saltykova, A., Roosens, N., Dierick, K., Marchal, K.,
De Keersmaecker, S., Bertrand, S.

P 13 VALIDATION OF A NEW SEROLOGY TOOL FOR JOHNE’S DISEASE IN CATTLE,
INCLUDING PRELIMINARY VALIDATION FOR BOVINE MILK AND CAPRINE SERUM
Hines, S., Rzepka, J.

P 14 NOVEL DIAGNOSTIC ASSAYS FOR BIOMARKER-BASED HEALTH MONITORING
IN DAIRY HERDS
Hoffmann, A., Zoldan, K.M., Lehmann, J.
P 15 INVESTIGATION OF VIRULENCE GENES USING MULTIPLEX PCR AND ANTIBIOTIC RESISTANCE AGAINST ENTEROCOCCUS SPP. ISOLATED FROM BROILER CHICKEN IN KOREA
Joh, S., Song, H., Bae, Y., Kwon, H., Kwon, Y.

P 16 A SEVERE OUTBREAK OF INCLUSION BODY RHINITIS IN PRE-WEANED PIGS IN THE UK
Karuna, S., Dastjerdi, A., Holmes, P., Williamson, S.

P 17 SVANOVIR® A. SUUM-AB ELISA IS AN EFFECTIVE SCRINNING TOOL FOR DETERMINING THE INFECTION LEVEL OF ASCARIS SUUM IN FATTENING PIGS
Kozlova, I., Vandekerckhove, E., Vlaminck, J., Geldhof, P., Juremalm, M.

P 18 DEVELOPMENT OF AN BARTONELLA HENSELAE SPECIFIC ELISA
Jost, M., Lotz, A., Kempf, V.

P 19 PFGE ANALYSES OF SHEWANELLA SPP. COLLECTED FROM FRESHWATER FISH
Paździor, E., Pekala - Safinska, A., Kwit, R., Wiecek, B., Wasył, D.

P 20 DIVERSITY OF SHEWANELLA SPP. ISOLATED FROM BALTIC CODE (GADUS MORHUA)
Pekala-Safinska, A., Paździor, E., Wiecek, B., Podolska, M.

P 21 ERIC-PCR ANALYSES OF SHEWANELLA SPP. COLLECTED FROM FRESHWATER FISH
Paździor, E., Pekala-Safinska, A., Wiecek, B., Wasył, D.

P 22 FIRST ISOLATION OF BLANDM-5 HARBOURING ESCHERICHIA COLI FROM TWO CLINICAL CASES IN DOGS IN SWITZERLAND

P 23 FIRST DETECTION “IN-FIELD” OF LYME BORRELLA IN TICKS BY LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP) TECHNIQUE
Raele, D., Pugliese, N., Galante, D., Cafiero, M.A.

P 24 MALDI-TOF MS ANALYSIS REVEALS DIVERSITY OF AESCULIN-POSITIVE KATALASE-NEGATIVE GRAMPOSITIVE-COCCI IN BOVINE MASTITIS MILK SAMPLES.
Regli, W., Wettstein, K., Matthias, L., Arnold, S.

P 25 DIFFERENTIATION BETWEEN SALMONELLA ENTERITIDIS VACCINE 441/014 AND SE FIELD STRAINS AND BETWEEN ENTERITIDIS AND TYPHIMURIUM IN ONE REAL-TIME PCR REACTION
Rölfing, A.

P 26 AUTOMATIC MAGNETIC BEAD-BASED EXTRACTION OF 1 TO 48 SAMPLES USING THE NEW INDIMAG 48
Schroeder, C., Gaunitz, C., Labitzke, M., Sasse, O., De Roo, K., Engemann, C., Ullman, F.

P 27 DEVELOPMENT OF AN ALTERNATIVE MULTIPLEXED BEAD-BASED AVIAN INFLUENZA HS PATHOTYPING ASSAY.
Gregorowicz, E., Steensels, M., Boland, C., Wattiau, P., Lambrechts, B.

P 28 PRELIMINARY RESULTS OF POLYMERASE CROSS-LINKING SPIRAL REACTION (PCLSR) OPTIMIZATION FOR DETECTION OF MYCOPLASMA BOVIS IN CATTLE
Szczotka, M., Dudek, K., Woźniakowski, G., Bednarek, D.

P 29 DETERMINATION OF EXOSOMES INFECTIVITY IN CATTLE INFECTED WITH BOVINE LEUKAEMIA VIRUS (BLV)
Szczotka, M., Pluta, A., Iwan, E., Szczotka-Bochiarz, A.
P 30 EVALUATION OF THE PERFORMANCES OF A MYCOBACTERIUM AVIUM SUBSPECIES PARATUBERCULOSIS AB ELISA IN YOUNG ADULT COWS THROUGH A LONGITUDINAL APPROACH
Emmanuelle, D.M., Quinet, C., Gregoire, F., Houtain, J.Y.

P 31 SEROPREVALENCE OF BORDER DISEASE VIRUS AND OTHER PESTIVIRUSES IN SHEEP IN ALGERIA AND ASSOCIATED RISK FACTORS
Feknous, N., Hanon, J.B., Tignon, M., Khaled, H., Bouyoucef, A., Cay, A.B.

P 33 PESTI VIRUS ANTIBODY PREVALENCE IN SEMI DOMESTICATED REINDEER IN NORTHERN SCANDINAVIA AND FINLAND
Hagström, Å., Omazic, A., Johansson Wensman, J., Reilas, T., Tryland, M., Kantanen, J., Alibhīn, A., Leijon, M.

P 34 THE IMPORTANCE OF MONITORING NEOSPOROSIS STATUS IN DAIRY FARMS – CASE STUDY
Pereira, A., Afonso, C., Barbosa, A.

P 35 SEROPREVALENCE OF NEOSPORA CANINUM IN PORTUGUESE DAIRY FARMS
Pereira, A., Afonso, C., Barbosa, A.

P 36 DETECTION OF VARIANTS OF BOVINE LEUKEMIA VIRUS WITH MUTATIONS ASSOCIATED WITH LOW NUMBER OF PROVIRUS COPIES
Pluta, A., Rola-Łuszczak, M., Kuzmak, J.

P 37 DEVELOPMENT OF TOOLS FOR DIAGNOSIS AND PREVENTION OF NODAVIRUS OUTBREAKS
Ranz, Å., Galán, C., Fresco, A., Redondo, E., Rodríguez, M.J., Garcia, I., Sanz, A., Rueda, P.

P 38 EVALUATION OF THE VETMAX™-GOLD AIV DETECTION KIT AND VETMAX™-GOLD SIV DETECTION KIT FOR DETECTION OF AVIAN AND SWINE INFLUENZA VIRUSES
Reid, S., Russell, C., Cooper, J., Holland, A., Brookes, S., Ian, B., Robben, N., Magnee, D.

P 39 MOLECULAR EPIDEMIOLOGY OF CANINE ADENOVIRUS TYPE 1 (CADV-1) IN FREE-RANGING SMALL CARNIVORES IN BERLIN AND BRANDENBURG, GERMANY
Schulze, C., Schatz, J., Dohrmann, E., Hlinak, A., Wohlsen, P.

P 40 PREVALENCE OF VIRULENCE FACTORS OF ESCHERICHIA COLI ISOLATED FROM PIGLETS WITH POST-WEANING DIARRHOEA IN BELGIUM AND THE NETHERLANDS
Vangroenweghe, F., Luppi, A.

P 41 WHERE TO DETECT SALMONELLA SSP. IN BPW?
Vlanantwerpen, G., Allais, L., Van Driessche, E., Vanrobaeys, M.

P 42 DETECTION AND PHYLOGENETIC ANALYSIS OF PORCINE GROUP A ROTAVIRUS FROM KOREAN WILD BOAR AND DOMESTIC PIGS
An, D.J., Kim, S.H., Cha, R.M., Choe, S., Cho, I.S.

P 43 DETECTION AND GENETIC EVOLUTION OF BOVINE CORONAVIRUS IN VIETNAM
An, D.J., Shin, J., Le, V.P., Cha, R.M., Choe, S., Cho, I.S.

P 44 GENETIC CHARACTERIZATION OF PORCINE EPIDEMIC DIARRHEA VIRUS FROM KOREAN PIGS: 2013–2018
An, D.J., Song, S., Cha, R.M., Choe, S., Cho, I.S.

P 45 RAPID, ON SITE, DIAGNOSIS OF FMD AND SAFE AND COST-EFFECTIVE SHIPMENT OF SAMPLES USING LATERAL FLOW DEVICES FOR LABORATORY DIAGNOSTICS
P 46 DEVELOPMENT AND VALIDATION OF A NEW ONE-WELL ELISA FOR THE DIAGNOSIS OF BESNOITIA BESNOITI ANTIBODIES ON BOVINE SERUM SAMPLES
Gentin, B., Dangien, C., Lassalle, B., Guilloux, J., Pelletier, C., Sellal, E.

P 47 EMERGENT PROPERTIES AND PROPAGATION PATHWAYS OF THE PEDV FIELD ISOLATE IN THE MODEL EXPERIMENT
Masiuk, D., Kokarev, A., Koliada, S., Nedzvetsy, V., Sosnitskiy, A.

P 48 INVESTIGATION OF FUR ANIMAL BOTULISM OUTBREAK IN POLAND
Kukier, E., Goldsztajn, M., Koziel, N., Dębski, J., Kwiatek, K., Paździor, E.

P 49 A HUGE OUTBREAK OF BOVINE BOTULISM – TRICKY WAY TO THE DIAGNOSIS
Kukier, E., Goldsztajn, M., Koziel, N., Kwiatek, K., Paździor, E.

P 50 VALIDATION OF REAL-TIME PCR KITS FOR SPECIFIC DETECTION OF CLASSICAL AND AFRICAN SWINE FEVER VIRUS
Pez, F., Ventosa, J., Meunier, A., Pelletier, C., Sellal, E.

P 51 DIAGNOSIS AND CHARACTERISATION OF FATAL CANINE LOUPING-ILL
Rocchi, M., Clark, J., Maley, M., Dagleish, M.

P 52 HOW MANY ASTROVIRUSES INFECT WILD BOAR?
Šalamínová, S., Jackova, A., Vilcek, S.

P 53 NEW PORCINE CIRCOVIRUS IN GERMANY?
Schroeder, C., Gaunitz, C., Schrammedei, K., Marthaler, D., Schwarz, B.A., Sasse, O., Engemann, C., Ullman, F.

P 54 SURVEY OF ZOONOTIC PATHOGENS IN WILD RODENTS IN SOUTHERN BELGIUM: DETECTION OF TULA VIRUS IN WOOD MICE

P 55 PCR DETECTION OF INFECTION AGENTS IN FROZEN BULL SEMEN IN RUSSIA
Yatsentyuk, S., Kozlova, A., Gorbacheva, N.

P 56 DEVELOPMENT OF THE REAL-TIME PCR FOR THE DETECTION AND DIFFERENTIATION OF MYCOPLASMA CALIFORNICUM, M. BOVIGENITALIUM, M. BOVIS AND U. DIVERSUM
Kozlova, A., Gorbacheva, N., Yatsentyuk, S.

P 57 EVOLUTION OF ANTIBIOTIC RESISTANCES IN TWO BACTERIAL GROUPS OVER TIME
Blanco, J., Martin-Muñoz, T., Martin, C., Garcia, M.

P 58 ENVIRONMENTAL SAMPLING FOR THE DETECTION OF ANTIBIOTICRESISTENT BACTERIA IN THE HOSPITALIZATION AREA OF A VETERINARY HOSPITAL
Blanco, J., Santos-Ocaña, S., Martin, C., Garcia, M.

P 59 OCCURRENCE OF ATYPICAL MYCOBACTERIOSIS IN AFRICAN CICHLIDS REARED IN A PRIVATE AQUARIUM
Bozzetta, E., Mugetti, D., Varello, K., Righetti, M., Francese, D.R., Prearo, M.

P 60 PRELIMINARY STUDY OF IN VITRO ANTIMICROBIAL SUSCEPTIBILITY OF BACILLUS ANTHRACIS STRAINS ISOLATED IN ITALY FROM 2001 TO 2017

P 61 MOLECULAR ANALYSIS OF PLASMIDS FROM MULTI-DRUG RESISTANT SALMONELLA ENTERICA SER. INFANTIS FROM POULTRY
Davydova, E., Krylova, E., Bogomazova, A., Gordeeva, V., Vetoshnikova, B., Soltynskaya, I., Komarov, A.

WWW.EAVLD2018.ORG
P 62 A NEW REAL-TIME PCR METHOD FOR DETECTION OF BARTONELLA SPECIES, IN SEROLOGICALLY POSITIVE CATS
Di Gialleonardo, L., Angioni, S.A., Di Domenico, M., Giansante, D., Tittarelli, M., Cammà, C.

P 63 EPIDEMIOLOGICAL INVESTIGATION ON ERYSIPELOTHRIX SPP. IN WILD BOARS AND POTENTIAL RISKS AT THE WILDLIFE-DOMESTIC-HUMAN INTERFACE

P 64 BOVINE TUBERCULOSIS AND ITS DANGER TO HUMANS
Gritly, A.

P 65 COMPARISON OF BRUCELLA MELITENSIS AND BRUCELLA OVIS BY PROTEOMIC APPROACH
Paci, V., Krasteva, I., Di Febo, T., Luciani, M., Bonfini, B., Orsini, M., Tittarelli, M.

P 66 DEVELOPMENT OF REAL-TIME PCR KIT FOR SPECIFIC DETECTION OF PORCINE CIRCOVIRUS TYPE 2 (PCV2) AND TYPE 3 (PCV3)
Pez, F., Ventosa, J., Pelletier, C., Sellal, E.

P 67 THE IMPROVEMENT OF ISOLATION TECHNIQUES IN THE RESEARCH OF ESCHERICHIA COLI STEC
Pisanu, M., Canu, A., Uda, M.T., Marras, A., Molotzu, M.R.

P 68 FIRST RECORDS OF THE PRESENCE OF LYSSAVIRUSES IN BATS IN BELGIUM
Terryn, S., Brochier, B., Van Gucht, S.

P 69 MONITORING THE SPREAD OF ESBL GENES AND OTHER CRITICAL ANTIMICROBIAL RESISTANCE DETERMINANTS IN GRAM-NEGATIVE BACTERIA WITH A HOME-MADE BEAD ARRAY
Timmermans, M., Wattiau, P., Boland, C.

P 70 VETERINARY EVALUATION OF CHROMID® COLISTIN R AGAR, A NEW CHROMOGENIC MEDIUM FOR SCREENING OF ENTEROBACTERIACEAE WITH ACQUIRED RESISTANCE TO COLISTIN
Treilles, M., Colin, A., Marchand, S., Bala, Y.

P 71 EVALUATION OF MYCOPLASMA BOVIS ANTIBODY ELISA FOR INDIVIDUAL MILK AND BULK MILK SAMPLES
Aalberts, M., Smits, C., Holzhauer, M.

P 72 COMPARISON OF SENSITIVITY AND SPECIFICITY OF CIVTEST® SUIS PRRS A/S WHEN DETECTING ANTIBODIES AGAINST GENOTYPE II PRRSV IN PIG SERA
Domenech, M., Ortiz, M., Coma, E., Porquet, L., Rebordosa, X.

P 73 PROVED DETECTION OF SPECIFIC ANTIBODIES AGAINST VIRULENT GENOTYPE II STRAIN OF PRRS VIRUS WITH CIVTEST® SUIS PRRS A/S
Domenech, M., Ortiz, M., Rebordosa, X., Porquet, L.

P 74 STORAGE OF BOVINE EAR NOTCHES FOR GENETIC PURPOSES: EVALUATION OF THE DNA COLLECTED WITH DIFFERENT PROTOCOLS
Alexandre, I., Cuvelier, P., Fabien, G.

P 75 BOVINE TUBERCULOSIS : COMBINATION OF TOOLS TO MAINTAIN FREE STATUS IN BELGIUM
Fretin, D., Roupie, V., Van Campe, W., Marché, S.

P 76 MONITORING OF BHV-1 VACCINATED CALVES COMPARING AN INDIRECT AND A BLOCKING ELISA WITH THE NEUTRALIZATION ASSAY
Boix Mas, O., Baratelli, M., Coma Oliva, E., Blanch Freixa, M., Gascon Torrens, S.
P 78 DESIGNS OF SPECIFIC RT-PCR FOR DETECTION VARIANT 2 GENOTYPE OF AVIAN INFECTIONS BRONCHITIS VIRUS

P 79 VALIDATION OF THE USE OF POOLED SERUM SAMPLES FOR THE SEROLOGICAL DETECTION BY ELISA OF PRRS VIRUS
Smeets, F., Quinet, C., Alexandre, I., Gotalle, P., Gregoire, F.

P 80 EUROPEAN VALIDATION OF A NEW ELISA FOR DETECTION OF BOVINE VIRAL DIARRHEA VIRUS ERNS ANTIGEN IN EAR NOTCHES
Guilloisou, S., Kenworthy, A., Tena, J.K., Campbell, W., Meeus, P., Airault, A., Michel, E., Lucas, C., Levesque Ninio, C., Le Drean, E.

P 81 OPTIMISATION AND VALIDATION OF A RT-QPCR DIAGNOSTIC TOOL FOR THE DETECTION OF ATYPICAL PORCINE PESTIVIRUS

P 82 VALIDATION OF REAL-TIME PCR ASSAY FOR THE DETECTION OF ECHINOCOCCUS CANADENSIS IN WOLF (CANIS LUPUS)
Hirvelä-Koski, V., Heikkinen, P., Isomursu, M.

P 83 EPIDEMIOLOGICAL SURVEY OF ENTERIC VIRUSES OF MALLARDS (ANAS PLATYRHYNCHOS) IN THE CZECH REPUBLIC
Moutelíková, R., Prodělalová, J., Mikšová, K., Kamler, J.

P 84 CONTROLLING THE CONTROLS – EXPLORING THE RELATIONSHIP BETWEEN B-ACTIN AND PATHOGEN PCR RESULTS
ONeill, R., Connaghan, E., Irvine, C., Mooney, J.

P 85 DEVELOPMENT OF THREE REAL-TIME RT-PCR KITS FOR SPECIFIC DETECTION OF AVIAN INFLUENZA VIRUS AND H5, H7, H9 TYPING
Pez, F., Meunier, A., Pelletier, C., Sellal, E.

P 86 DETECTION OF MULTIPLE VIRAL INFECTION IN DRONE EJACULATE USED FOR ARTIFICIAL INSEMINATION
Prodělalová, J., Moutelíková, R., Titěra, D., Kamler, M.

P 87 DEVELOPMENT AND VALIDATION OF THE METHOD OF THE FISH SPECIES IDENTIFICATION USING NEXT GENERATION SEQUENCING TECHNOLOGIES
Soltynskaya, I., Bogomazova, A., Vetoshnikova, B., Krylova, E., Sukhoedova, A., Golovko, O., Riabova, E., Davydova, E.

P 88 HOW TO STANDARDIZE BVDV-BULK-MILK-TESTING
Turowski, V., Janowetz, B., Alex, M., Lorenz, I., Boettcher, J.

P 89 COMPARISON OF 3 DIFFERENT ELISA KITS FOR SCREENING OF NEOSPORA CANINUM IN CATTLE
Van Driessche, E., Vanantwerpen, G., Allais, L., Vanrobaeys, M.

P 90 COMPARISON OF REAL-TIME PCR KITS AND DIRECT LYSIS BUFFERS FOR DETECTION OF BVD VIRAL RNA IN BOVINE EARNOTCHES
Allais, L., Van Driessche, E., Vanantwerpen, G., Vanrobaeys, M.

P 91 NEW, HIGHLY EFFECTIVE METHOD FOR DETECTING NEMATODE EGGS (ASCARIS SPP., TOXOCARA SPP., TRICHURIS SPP.) IN DEHYDRATED SEWAGE SLUDGE
Zdybel, J., Karamon, J., Różycki, M., Biliska-Zając, E., Kominek, A., Cencek, T.

P 92 THE USE OF DIGITAL COLORIMETRIC ANALYSIS FOR VIABILITY ASSESSMENT OF ASCARIS SUUM EGGS
Zdybel, J., Włodarczyk, M., Karamon, J., Sroka, J., Cencek, T.
PROGRAMME

5TH CONGRESS OF THE EUROPEAN ASSOCIATION OF VETERINARY LABORATORY DIAGNOSTICIANS
14–17 OCTOBER, 2018, MCE BUSINESS AND CONFERENCE CENTRE, BRUSSELS

WWW.EAVLD2018.ORG